R/params.R

Defines functions processAdditionalParams processParams mergeParams getParameter setDarchParams

Documented in setDarchParams

# Copyright (C) 2015-2016 Johannes Rueckert
#
# This file is part of darch.
#
# darch is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# darch is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with darch. If not, see <http://www.gnu.org/licenses/>.

#' Set \code{\linkS4class{DArch}} parameters
#' 
#' Allows setting \code{\linkS4class{DArch}} parameters normally passed to the
#' \code{\link{darch}} interface function when not using said interface.
#' These parameters can also be passed to \code{\link{newDArch}}.
#'
#' @param darch \code{\linkS4class{DArch}} instance.
#' @param ... Parameters to be set, see \code{\link{darch.default}}.
#' @export
#' @keywords internal
setDarchParams <- function(darch, ...)
{
  darch@parameters <- c(list(...), darch@parameters)
}

getParameter <- function(parameter, default=stop(futile.logger::flog.error(
  "Missing parameter \"%s\" and no default given.", parameter)),
  net = get("darch", envir = parent.frame()),
  parameters = net@parameters, ...)
{
  if (!is.null(parameters[[parameter]])) parameters[[parameter]] else default
}

# Merge parameter lists, later values do not overwrite earlier ones
mergeParams <- function(..., blacklist = c())
{
  paramLists <- list(...)
  mergedParams <- list()
  
  for (i in 1:length(paramLists))
  {
    pl <- paramLists[[i]]
    
    if (!is.list(pl) || is.null(names(pl)))
    {
      next
    }
    
    for (p in names(pl))
    {
      if (!is.null(mergedParams[[p]]) || (p %in% blacklist))
      {
        next
      }
      
      # Evaluate deparsed function calls
      # TODO make more general; document
      if (length(pl[[p]]) == 1 && is.atomic(pl[[p]]) &&
          length(grep("^(c|list|get|getAnywhere)\\(.*\\)$",
          as.character(pl[[p]]))) == 1)
      {
        pl[[p]] <- eval(parse(file = NULL, text = as.character(pl[[p]])))
      }
      
      pNew <- p
      
      # Prepend a "." if parameter name does not start with "."
      if (length(grep("^\\.", p)) != 1)
      {
        pNew <- paste0(".", p)
        mergedParams[[pNew]] <- pl[[p]]
      }
      
      mergedParams[[p]] <- pl[[p]]
      
      # Convert to function if necessary
      if (substr(p, start = nchar(p) - 7, stop = nchar(p)) == "Function"
          && p != pNew)
      {
        mergedParams[[p]] <- (if (length(mergedParams[[p]]) > 1)
          as.list(mergedParams[[p]]) else list(mergedParams[[p]]))
        mergedParams[[pNew]] <-
          sapply(mergedParams[[p]], characterToFunction, USE.NAMES = F)
        # Store as string
        mergedParams[[p]] <- unlist(sapply(mergedParams[[p]],
          functionToCharacter, USE.NAMES = F, default = "non-darch function"))
        
        # Force unlisting
        if (length(mergedParams[[pNew]]) == 1)
        {
          mergedParams[[pNew]] <- mergedParams[[pNew]][[1]]
        }
        
        if (is.null(unlist(mergedParams[[pNew]])))
        {
          stop(futile.logger::flog.error(
            "Could not find function(s) \"%s\" for parameter %s",
            deparseClean(pl[[p]]), p))
        }
      }
    }
  }
  
  mergedParams
}

# Processes and validates a given list of darch parameters
processParams <- function(params)
{
  dataSet <- get("dataSet", envir = parent.frame())
  
  if (is.null(params[[".matMult"]]))
  {
    params[[".matMult"]] <- `%*%`
  }
  
  params[[".debug"]] <- (names(futile.logger::DEBUG) ==
    futile.logger::flog.threshold())
  
  if (params[[".gputools"]])
  {
    if ((length(find.package("gputools", quiet = T)) == 0))
    {
      futile.logger::flog.warn("gputools package not available.")
      futile.logger::flog.info("Using CPU matrix multiplication.")
      params[[".gputools"]] <- F
    }
    else
    {
      params[[".matMult"]] <- gputools::gpuMatMult
      # TODO handle invalid values and errors from chooseGpu()
      params[[".gputools.deviceId"]] <-
        gputools::chooseGpu(params[[".gputools.deviceId"]])
      
      futile.logger::flog.info(paste("Using GPU matrix multiplication on",
        "device", params[[".gputools.deviceId"]]))
    }
  }
  else
  {
    futile.logger::flog.info("Using CPU matrix multiplication.")
  }
  
  if (is.null(dataSet@targets) && params[[".darch.returnBestModel"]])
  { 
    futile.logger::flog.warn(paste("No targets were provided, automatically",
      "changing darch.returnBestModel to FALSE"))
    
    params[[".darch.returnBestModel"]] <- F
    params[["darch.returnBestModel"]] <- F
  }
  
  # TODO move into dataset validation?
  if (params[[".darch.isClass"]] && is.null(dataSet@targets))
  {
    futile.logger::flog.warn(
      "No targets were provided, setting darch.isClass to FALSE")
    params[["darch.isClass"]] <- F
    params[[".darch.isClass"]] <- F
  }
  
  # TODO problematic for huge datasets?
  if (params[[".darch.isClass"]] &&
    length(unique(c(dataSet@targets))) > 2)
  {
    futile.logger::flog.warn(
      "darch.isClass was set to TRUE while numeric targets were provided")
  }
  
  # Create default layers vector if scalar given
  if (length(params[[".layers"]]) == 1)
  {
    futile.logger::flog.warn(paste("No vector given for \"layers\" parameter,",
      "constructing shallow network with one hidden layer of %s neurons."),
      params[[".layers"]])
    params[[".layers"]] = c(ncol(dataSet@data), params[[".layers"]],
                            ncol(dataSet@targets))
  }
  
  layers <- params[[".layers"]]
  
  numLayers = length(layers)
  
  # Adjust neurons in input layer
  if (layers[1] != ncol(dataSet@data))
  {
    futile.logger::flog.warn(paste("Changing number of neurons in the input",
      "layer from %s to %s based on dataset."), layers[1], ncol(dataSet@data))
    layers[1] <- ncol(dataSet@data)
  }
  
  # Adjust neurons in output layer if classification
  if (params[["darch.isClass"]] && layers[numLayers] != ncol(dataSet@targets))
  {
    futile.logger::flog.warn(paste("Changing number of neurons in the output",
      "layer from %s to %s based on dataset."), layers[numLayers],
      ncol(dataSet@targets))
    layers[numLayers] <- ncol(dataSet@targets)
  }
  
  params[[".layers"]] <- layers
  
  # Train layer mask
  trainLayers <- (if (length(params[[".darch.trainLayers"]]) == 1)
    rep(params[[".darch.trainLayers"]], numLayers - 1)
    else params[[".darch.trainLayers"]])
  
  if (length(trainLayers) != (numLayers - 1))
  {
    stop(futile.logger::flog.error(paste("Invalid length of darch.trainLayers",
      "parameter, expected 1 or {} but got {}", numLayers - 1,
      length(trainLayers))))
  }
  
  params[[".darch.trainLayers"]] <- trainLayers
  
  # Print warning if using GPU matrix multiplication with small network
  if (params[[".gputools"]])
  {
    matrixSizes <- vector(mode = "numeric", length = numLayers - 1)
    
    for (i in 1:(numLayers - 1))
    {
      matrixSizes[i] <-
        params[[".darch.batchSize"]] * layers[i] + layers[i] * layers[i + 1]
    }
    
    # TODO matrix multiplication for validation is not considered
    # TODO what can be considered small? for now, average of less than 100x100
    if (mean(matrixSizes) < 100 * 100 * 2)
    {
      futile.logger::flog.warn(paste("Due to small network and / or batch",
        "size, GPU matrix multiplication may be slower than CPU matrix",
        "multiplication."))
    }
  }
  
  # Validate weight generation
  params[[".generateWeightsFunction"]] <-
    (if (length(params[[".generateWeightsFunction"]]) == 1)
    replicate(numLayers - 1, params[[".generateWeightsFunction"]]) else
    params[[".generateWeightsFunction"]])
  
  if (length(params[[".generateWeightsFunction"]]) != (numLayers - 1))
  {
    stop(futile.logger::flog.error(
      "Invalid number of weight generation functions (expected %s, got %s)",
      numLayers - 1, length(params[[".generateWeightsFunction"]])))
  }
  
  params[[".darch.unitFunction"]] <-
    (if (length(params[[".darch.unitFunction"]]) == 1)
    replicate(numLayers - 1, params[[".darch.unitFunction"]]) else
    params[[".darch.unitFunction"]])
  params[[".darch.weightUpdateFunction"]] <-
    (if (length(params[[".darch.weightUpdateFunction"]]) == 1)
      replicate(numLayers - 1, params[[".darch.weightUpdateFunction"]]) else
        params[[".darch.weightUpdateFunction"]])
  
  if (length(params[[".darch.unitFunction"]]) != (numLayers - 1))
  {
    stop(futile.logger::flog.error(
      "Invalid number of unit functions (expected %s, got %s)",
      numLayers - 1, length(params[[".darch.unitFunction"]])))
  }
  
  if (length(params[[".generateWeightsFunction"]]) != (numLayers - 1))
  {
    stop(futile.logger::flog.error(
      "Invalid number of weight update functions (expected %s, got %s)",
      numLayers - 1, length(params[[".generateWeightsFunction"]])))
  }
  
  # epochs
  if (is.null(params[[".darch.epochsTrained"]]))
  {
    params[[".darch.epochsTrained"]] <- 0
  }
  
  params[[".darch.epochsScheduled"]] <- (params[[".darch.epochsTrained"]] +
    params[[".darch.numEpochs"]])
  
  # backpropagation
  # TODO move to backprop init?
  params[[".bp.learnRate"]] <- (if (length(params[[".bp.learnRate"]]) == 1)
    replicate(numLayers - 1, params[[".bp.learnRate"]]) else
      params[[".bp.learnRate"]])
  
  if (length(params[[".bp.learnRate"]]) != (numLayers - 1))
  {
    stop(futile.logger::flog.error(
      "Invalid number of backprop learning rates (expected %s, got %s)",
      numLayers, length(params[[".bp.learnRate"]])))
  }
  
  params
}

processAdditionalParams <- function(additionalParams)
{
  additionalParamsNames <- names(additionalParams)
  
  if ("" %in% additionalParamsNames)
  {
    warning(futile.logger::flog.warn(paste(
      "One or more additional unnamed parameters were found, they will be",
      "ignored.")))
    
    additionalParams[[which(additionalParamsNames == "")]] <- NULL
    additionalParamsNames <- names(additionalParams)
  }
  
  # Check for old parameters
  compatList <- compatibilityList()
  oldParams <- 
    additionalParamsNames[which(additionalParamsNames %in% names(compatList))]
  
  if (length(oldParams) > 0)
  {
    for (param in oldParams)
    {
      warning(futile.logger::flog.warn(paste("Ignoring deprecated parameter",
        "'%s', please use '%s' instead."), param, compatList[[param]]))
    }
    
    additionalParamsNames <-
      additionalParamsNames[which(!(additionalParamsNames %in% oldParams))]
  }
  
  
  # TODO whitelist parameters like na.action and other known exceptions
  if (length(additionalParamsNames) > 0)
  {
    warning(futile.logger::flog.warn(paste("The following parameters are not",
      "supported by darch and may be ignored: '%s'"),
      paste(additionalParamsNames, collapse = "', '")))
  }
  
  additionalParams
}

Try the darch package in your browser

Any scripts or data that you put into this service are public.

darch documentation built on May 29, 2017, 8:14 p.m.