
Introducing elliptic, an R package for elliptic and

modular functions

Robin K. S. Hankin

Abstract

To cite the package in publications, use Hankin (2006). This paper introduces the
elliptic package of R routines, for numerical calculation of elliptic and related functions.
Elliptic functions furnish interesting and instructive examples of many ideas of complex
analysis, and package elliptic illustrates these numerically and visually. A statistical
application in fluid mechanics is presented.

Keywords: Elliptic functions, modular functions, Weierstrass elliptic functions, visualization
of complex functions.

1. Introduction

The elliptic functions crop up here and there in diverse areas of applied
mathematics such as cosmology (Kraniotis and Whitehouse 2002), chemi-
cal engineering (Koopman and Lee 1991), dynamical systems (Kotus and
Urbański 2003), and quantum mechanics (Chow 2002); here they are
applied to fluid mechanics (Johnson and McDonald 2004, 2005). They
also provide interesting and instructive non-elementary examples of many
results in complex analysis such as Cauchy’s integral theorem and the
residue theorem.

In this paper I introduce elliptic, a new R package for numerical calculation of Weierstrass and
Jacobi elliptic functions, theta functions and modular functions; it is based on Hankin (2006).
The emphasis is on efficient numerical calculation, and informative visualization techniques.

The package is available on CRAN, https://CRAN.R-project.org/package=elliptic (R
Development Core Team 2005).

2. Elliptic functions

This section gives a very brief introduction to elliptic functions. For more detail and rigorous
derivations, the reader is referred to the classic literature: the standard reference would
be Whittaker and Watson (1952). Chandrasekharan (1985) approaches the field from a more
modern perspective, and Abramowitz and Stegun (1965) provide the definitive reference work
for the case of real invariants.

A meromorphic function f is said to be elliptic if ∃ω1, ω2 ∈ C with ω2/ω1 ∈ C\R such that

https://CRAN.R-project.org/package=elliptic

2 Elliptic functions with R

f(z) = f(z + 2mω1 + 2nω2) (1)

whenever f(z) is defined and m,n ∈ Z. Notation in this paper is consistent with that
of Abramowitz and Stegun (1965); ω1 and ω2 are called the half periods. In 1862, Weierstrass
introduced his ℘ function which is defined as

℘(z) =
1

z2
+

∑

m,n∈Z
m,n̸=0

{

1

(z − 2mω1 − 2nω2)2 − 1

(2mω1 + 2nω2)2

}

. (2)

The ℘ function is, in a well defined sense, the simplest nontrivial elliptic function (Whittaker
and Watson 1952). Given this, we have a Laurent expansion of the form

℘(z) − z−2 =
1

20
g2z

2 +
1

28
g3z

4 +O(z6) (3)

with

g2 = 60
∑′ 1

(2mω1 + 2nω2)4 , g3 = 140
∑′ 1

(2mω1 + 2nω2)6 , (4)

where a prime indicates summation over Z2 excluding (m,n) = (0, 0). For reasons to be made
clear in section 4.1.1, g2 and g3 are known as the invariants. Other equivalent forms for ℘
include its differential equation

(

d℘

dz

)2

= 4℘3 − g2℘− g3 (5)

and the relation

z =

∫

∞

t=w

dt
√

4t3 − g2t− g3

(6)

which is equivalent to w = ℘(z).

Related functions include the zeta function ζ(z), defined by

dζ(z)

dz
= −℘(z) (7)

and the sigma function σ(z), defined by

d log σ(z)

dz
= ζ(z), lim

z −→ 0

[

σ(z)

z

]

= 1 (8)

(neither σ(z) nor ζ(z) is elliptic). It may be shown that ζ(z) is analytic except for points on
the lattice of periods, at which it has simple poles with residue 1. One classic result is due to
Legendre: if ω1, ω2 is a pair of basic periods1, with Im(ω2/ω1) > 0, then

η1ω2 − η2ω1 = πi (9)

where η1 = ζ(ω1) and η2 = ζ(ω2).

1A pair of basic periods is one that generates the period lattice. Basic periods are not unique as many pairs
of periods may generate the same lattice. However, there is one pair of basic periods, the fundamental periods
that are, in a well-defined sense, optimal (Chandrasekharan 1985).

Robin K. S. Hankin 3

2.1. Jacobian elliptic functions

Jacobi approached the description of elliptic functions from a different perspective (Weisstein
2005). Given m = k2 and m1 with m+m1 = 1, Jacobi showed that if

u =

∫ φ

t=0

dt
√

(1 − t2)(1 −mt2)

the functions sn(u, k), cn(u, k) and dn(u, k) defined by

snu = sinϕ, cnu = cosϕ, dnu =
√

1 − k2 sin2 ϕ (10)

are elliptic with periods

K =

∫ π/2

θ=0

dθ√
1 −m sin2 θ

(11)

and

iK ′ = i

∫ π/2

θ=0

dθ
√

1 −m1 sin2 θ
. (12)

The Jacobian elliptic functions are encountered in a variety of contexts and bear a simple
analytical relation with the Weierstrass ℘ function.

3. Numerical evaluation and Jacobi’s theta functions

Although equation 2 is absolutely convergent, it converges too slowly to be of use in practical
work, and an alternative definition is needed.

Jacobi presented his four theta functions in 1829 and, although they have interesting proper-
ties in their own right, here they are used to provide efficient numerical methods for calculation
of the elliptic functions above. They are defined as follows:

θ1(z, q) = 2q1/4
∞
∑

n=0

(−1)nqn(n+1) sin(2n+ 1)z (13)

θ2(z, q) = 2q1/4
∞
∑

n=0

qn(n+1) cos(2n+ 1)z (14)

θ3(z, q) = 1 + 2
∞
∑

n=1

qn2

cos 2nz (15)

θ4(z, q) = 1 + 2
∞
∑

n=1

(−1)nqn2

cos 2nz (16)

It may be seen that, provided |q| < 1, the series converges for all z ∈ C. Indeed, the
convergence is very rapid: the number of correct significant figures goes as the square of the
number of terms. It should be noted that there are different notations in use, both for the
four function names, and for the independent variables.

All the functions described in section 2 may be expressed in terms of the theta functions.
This is the default method in elliptic, although alternative algorithms are implemented where
possible to provide a numerical and notational check.

4 Elliptic functions with R

For example, Weierstrass’s ℘ function is given by

℘(z) =
π2

4ω2
1

(

θ′

1(0, q)θ2(v, q)

θ2(0, q)θ1(v, q)

)2

(17)

where q = eiω2/ω1 ; the other functions have similar theta function definitions.

4. Package elliptic in use

This section shows elliptic being used in a variety of contexts. First, a number of numerical
verifications of the code are presented; then, elliptic and related functions are visualized
using the function view(); and finally, the package is used to calculate flows occurring in an
oceanographic context.

The primary function in package elliptic is P(): this calculates the Weierstrass ℘ function,
and may take named arguments that specify either the invariants g or half periods Omega:

> z <- 1.9+1.8i

> P(z,g=c(1,1i))

[1] -0.5508515-2.404205i

> P(z,Omega=c(1,1i))

[1] -12.01771-15.97636i

4.1. Numerical verification

Work in the field of elliptic functions is very liable to mistakes2, and package elliptic includes a
number of numerical checks to guard against notational inexactitude. These checks generally
use the convenient (trivial) function maxdiff() that shows the maximum absolute difference
between its two arguments:

> maxdiff <- function(x,y){max(abs(x-y))}

For example, we may compare the output of P(), which uses equation 17, against the straight-
forward Laurent expansion, used by P.laurent():

> g <- c(3,2+4i)

> z <- seq(from=1,to=0.4+1i,len=34)

> maxdiff(P(z,g), P.laurent(z,g))

[1] 1.831027e-15

2Abramowitz and Stegun (1965) state that there is a “bewildering” variety of notations in use; the situation
has become more confusing in the intervening 40 years.

Robin K. S. Hankin 5

showing reasonable agreement; note that function P() uses the conceptually distinct theta
function formula of equation 17. Package elliptic includes a large number of such numerical
verification tests in the test suite provided in the package, but perhaps more germane is
the inclusion of named identities appearing in Abramowitz and Stegun (1965). For example,
consider function e18.10.9(), named for the equation number of the identity appearing on
page 650. This function returns the difference between the (algebraically identical) left and
right hand side of three grouped identities:

12ω2
1e1 = π2

[

θ4
3(0, q) + θ4

4(0, q)
]

12ω2
1e2 = π2

[

θ4
2(0, q) − θ4

4(0, q)
]

(18)

12ω2
1e3 = −π2

[

θ4
3(0, q) + θ4

4(0, q)
]

where q = e−πK′/K . From the manpage:

> abs(e18.10.9(parameters(g=g)))

[1] 3.877842e-15 7.944109e-15 1.280949e-14

again showing reasonably accurate numerical results, but perhaps more importantly explicitly
verifying that the notational scheme used is internally consistent.

Although the examples above use the invariants g2 and g3 to define the elliptic function and
its periods, sometimes the fundamental periods are known and the invariants are desired.
This is done by function g.fun(), which takes the fundamental periods as arguments and
returns the two invariants g2 and g3. Observe that there are many pairs of basic periods
that generate the same lattice—see figure 1—but it usual to specify the unique fundamental
periods as this pair usually has desirable numerical convergence properties.

Unimodularity

Many functions of the package are unimodular. The invariants g2 and g3 are defined in terms
of a pair of basic periods ω1 and ω2. However, any pair of basic periods should have the same
invariants, because any pair of basic periods will define the same elliptic function (hence the
name). Basic period pairs are related by a unimodular transformation: if ω1, ω2 and ω̃1, ω̃2

are two pairs of basic periods then there exist integers a, b, c, d with ad− bc = 1 and
(

a b
c d

)(

ω1

ω2

)

=

(

ω̃1

ω̃2

)

Formally, a unimodular function f(·, ·) is one with arity 2—it is conventional to write f(v) =
f(a, b)—and for which

f(v) = f(Mv) (19)

where M is unimodular: that is, an integer matrix with a determinant of unity. In this
context, unimodular matrices (and the transformations they define) are interesting because
any two pairs of basic periods are related by a unimodular transformation.

The package includes functions that generate unimodular matrices. The underlying function
is congruence(), which generates 2 × 2 integer matrices with a determinant of 1, given the
first row. For example:

6 Elliptic functions with R

Re(z)

Im
(z

)

−4 −2 0 2 4

−
4

−
2

0
2

4

Figure 1: The lattice generated by ℘(z; 1+ i, 2−3i); fundamental period parallelogram shown
in light gray and a basic period parallelogram shown in darker gray

Robin K. S. Hankin 7

> M <- congruence(c(4,9))

[,1] [,2]

[1,] 4 9

[2,] 3 7

(observe that the determinant of M is unity) and thus we may verify the unimodularity of,
for example, g.fun() by evaluating the invariants for a pair of fundamental periods, and
comparing this with the invariants calculated for a pair of basic periods that are related to
the fundamental periods by a unimodular transformation (here M). In R idiom:

> o <- c(1,1i)

> maxdiff(g.fun(o), g.fun(M %*% o,maxiter=800))

[1] 1.634621e-13

showing that the invariants for period pair o = (1, i)T are almost identical to those for period
pair o′ = Mo = (4 + 9i, 3 + 7i)T . Observe that the latter evaluation requires many more
iterations for accurate numerical evaluation: this behaviour is typically encountered when
considering periods whose ratio is close to the real axis.

In addition, function unimodular() generates unimodular matrices systematically, and func-
tion unimodularity() checks for a function’s being unimodular.

Contour integration and the residue theorem

As noted in section 2, the zeta function ζ(z) possesses a simple pole of residue 1 at the origin.
The residue theorem would imply that

z
ζ(z) dz = 2πi

when the contour is taken round a path that encircles the origin but no other poles. This may
be verified numerically using elliptic’s myintegrate suite of functions, which generalize the
stats package’s integrate() function to the complex plane. Here, function integrate.contour()

is used to integrate round the unit circle. This function takes three arguments: first, the func-
tion to be integrated; second, a function that describes the contour to be integrated along;
and third, a function that describes the derivative of the contour. We may now integrate over
a closed loop, using arguments u and udash which specify a contour following the unit circle:

> jj <- integrate.contour(Zeta,u,udash)

> maxdiff(jj, 2*pi*1i)

[1] 9.302781e-16

showing reasonable numerical accuracy. Compare Weierstrass’s ℘ function, which has a second
order pole at the origin:

8 Elliptic functions with R

> abs(integrate.contour(WeierstrassP,u,udash))

[1] 2.482534e-16

The PARI system

Perhaps the most convincing evidence for numerical accuracy and consistency of notation
in the software presented here is provided by comparison of the package’s results with that
of PARI (Batut et al. 2000). The PARI system is an open-source project aimed at number
theorists, with an emphasis on pure mathematics; it includes some elliptic function capabil-
ity. Function P.pari() of package elliptic calls the pari system directly to evaluate elliptic
functions from within an R session, enabling quick verification:

> omega <- c(1,1i)

> z <- seq(from=pi,to=pi*1i,len=10)

> maxdiff(P.pari(z,Omega=omega), P(z,params=parameters(Omega=omega)))

[1] 2.760239e-14

again showing reasonable agreement, this time between two independent computational sys-
tems.

4.2. Visualization of complex functions

In the following, a Weierstrass elliptic function with invariants of 1 + i and 2 − 3i will be
considered. The half periods ω1, ω2 are first evaluated:

> jj.omega <- half.periods(g=c(1+1i,2-3i))

and these may be visualized by using latplot(), as in figure 1. Figure 2 shows the real
part of such a function, shown over part of the complex plane, and figure 3 shows the same
function using the view() function.

The σ function with the same invariants is visualized in figure 4, showing that its zeros lie on
the same lattice as figure 1.

Figure 5 shows the zeta function, and figure 6 shows Jacobi’s “sn” function.

4.3. Potential flow

One application of complex analysis is to fluid dynamics. In particular, potential flow (steady,
two-dimensional, inviscid, incompressible) may be studied with the aid of analytic complex
functions. Here I show how the elliptic functions discussed in this paper may be used to
simulate potential flow in a rectangular domain.

Robin K. S. Hankin 9

Figure 2: Real part of ℘(z, 1, 1 + 2i). Note the second order poles at each lattice point

10 Elliptic functions with R

Figure 3: Visualization of ℘(z, 1, 1+2i) using the scheme of Thaller (1998): white corresponds
to a pole, black to a zero, and full saturation to |℘(z)| = 1. The poles of ℘(z) occur on a regular
lattice, and the zeros on two shifted lattices. Note how each of the poles is surrounded by two
cycles of hue, indicating that they are of second order; and each of the zeros is surrounded
by one cycle of hue, indicating that they are simple roots

Robin K. S. Hankin 11

Figure 4: Visualization of f = σ(z, 1, 1 + 2i) using view(); colour indicates Arg(f). Thus
points at which f(z) is on the negative real axis, that is {z: f(z) ∈ R−}, are visible as
discontinuities of (colourimetric) value. These discontinuities are semi-infinite; note that the
zeros of f occur, at the (finite) end of each line, on a regular lattice. As |z| increases, each
discontinuity threads its way through an increasing number of other discontinuities and zeros,
and the spacing between the discontinuities becomes less and less

12 Elliptic functions with R

Figure 5: Visualization of ζ(z, 1, 1 + 2i) using view() and the colouring scheme of Thaller.
Poles appear as white regions, and zeros as black regions. Each pole is of single order, each
zero is a simple root (one cycle of hue). The poles occur on a lattice; there is no simple
pattern to the zeros. Note the overall tendency towards the edges of the square to whiteness:
|f | increases with |z| as per equation 7

Robin K. S. Hankin 13

Figure 6: Jacobi’s “sn” function using the elliptic package. Here, f = sn(5 − 2i,m) is
visualized, with background utilizing Thaller’s scheme, and contours of equal Re(f) at three
selected values shown as black lines. Note the aperiodic arrangement of poles (white areas)
and zeros (black areas)

14 Elliptic functions with R

Although the tenets of potential flow appear to be absurdly idealized3, it is nevertheless a
useful technique in many branches of practical fluid mechanics: it is often used to calculate
a “theoretical” flowfield with which measured velocities may be compared. A short sketch of
potential theory is given here but the reader is referred to Milne-Thomson (1949) for a full
exposition. Briefly, we define a complex potential w(z) to be a complex function

w(z) = ϕ+ iψ

and observe that both ϕ and ψ obey Laplace’s equation if w is differentiable. Given this, we
may take the velocity vector v = (vx, vy) of the fluid to be

vx =
∂ϕ

∂x
, vy =

∂ϕ

∂y
,

and observe that streamlines are given by contours of equal ψ; contours of equal ϕ are called
equipotential lines. The two systems of lines cross at right angles (this follows from the
Cauchy-Riemann conditions).

Consider, for example, the function w(z) = z2, whose associated flow field is shown in figure 7.
This corresponds to a stagnation point, at which the speed vanishes; the streamlines (solid)
intersect the equipotential lines (dashed) at right angles.

Now consider a slightly more complicated case. A point source of strength m at z0 may be
represented by the function

m log(z − z0)

(a sink corresponds to m < 0). Any finite number of sources or sinks may be combined, as
in
∑

imi log(z − zi) where the ith source is at zi and has strength mi, because the system is
linear4. Figure 8 shows two sources and two sinks, all of equal strength. Because the flowfield
is symmetric with respect to the real axis, there is no flux across it; we may therefore ignore
the flow in the lower half plane (ie {z: Im(z) < 0}) and consider the flow to be bounded below
by the real axis. This is known as the method of images (Milne-Thomson 1949).

Now, one may transform a potential flowfield into another form using a conformal mapping
from the z- plane to the ζ- plane, traditionally denoted

ζ = f(z).

This technique finds application when flow is desired (in the ζ- plane) that obeys some specific
boundary condition that is simple to specify in the z- plane.

In this case, we seek a conformal transformation that maps the upper half plane to a rectangle.
If we consider the flowfield shown in figure 8, then the map given by

ζ =

∫

dz
√

(1 − a2z2)(1 − z2)

takes the upper half plane of the ζ- plane to a rectangle in the z- plane (Milne-Thomson
1949). Using equation 10, this is equivalent to z = sn(ζ;m), where sn(·, ·) is a Jacobian
elliptic function and m a constant of integration.

Figure 9 shows the resulting flow field: observe how the flow speed, which is proportional to
the spacing between the streamlines, is very small near the left-hand edge of the rectangle.

3Feynman, Leighton, and Sands (1966) famously described potential flow as the study of “dry water”
4It is often more convenient to work with the algebraically equivalent form log

(
∏

(z − zi)
mi

)

, as there are
fewer branch cuts to deal with.

Robin K. S. Hankin 15

Figure 7: Potential flow on the complex plane: field corresponding to the function (z) = z2.
Solid lines represent streamlines and dotted lines represent equipotentials; these intersect at
right angles. Note stagnation point at the origin

16 Elliptic functions with R

Figure 8: Potential flow in on the complex plane: two sources and two sinks, all of equal
strength. Solid lines denote streamlines, dotted lines equipotentials; colour scheme uses the
hcl() system: hue varies with the argument, and chrominance varies with the modulus, of
the potential. There is no flux between the lower and the upper half plane, but there is flux
out of, and in to, the diagram. Note the stagnation point at approximately 5 + 0i

Robin K. S. Hankin 17

Figure 9: Potential flow in a rectangle of aspect ratio 2: source and sink of equal strength.
Colour scheme as in figure 8. Note the dividing streamline which terminates in a stagnation
point on the rectangle boundary

18 Elliptic functions with R

4.4. Bayesian analysis of potential flow

When considering potential flows, it is often necessary to infer the locations of singularities
in the flow from sparse and imperfect data (Johnson and McDonald 2004).

Here, I apply the methods of Kennedy and O’Hagan (2001a) and Kennedy and O’Hagan
(2001b) (hereafter KOH and KOHa respectively) using the BACCO package (Hankin 2005)
to assess some characteristics of potential flow in a rectangle.

Kennedy and O’Hagan considered the following inference problem for a set of parameters θ ∈
Rq that are inputs to a computer program. Given an independent variable x ∈ Rn, and a set
of scalar (“field”) observations z = z(x), they assume

z(x) = ρ · η (x, θ) + δ(x) + ϵ (20)

where ρ is a constant of proportionality (notionally unity); η(·, ·) a Gaussian process with
unknown coefficients; θ the true, but unknown parameter values; δ(·) a model inadequacy
term (also a Gaussian process with unknown coefficients); and ϵ ∼ N(0, λ2) uncorrelated
normal observational errors.

Inferences about η(·, ·) are made from point observations of the process: Kennedy and
O’Hagan call these the “code observations” on the grounds that their chief motivation was
the understanding of complex computer codes.

Here, potential flow in a rectangle is considered. The source is at one corner of the rectangle,
which is considered to have lower left point (−1, 0) and upper right point (1, 1). The position
of the sink is unknown.

I now show how the position of the sink may be inferred from a sparse and noisy set of ob-
served fluid speeds. Similar inference problems are encountered in practice when considering
oceanographic flows such as those occurring near deep sea vents, although the geometry is
generally more complex than considered here.

The independent variable x is the two-dimensional position within the rectangle, and the field
observation z(x) is the fluid speed at that point, plus obervational error ϵ. The parameter
set θ thus has two degrees of freedom corresponding to the x− and y− coordinates of the
sink.

Field observations will be obtained numerically, using the elliptic package. The simulated
flowfield has a sink at a known position—in this case the geometric centre of the rectangle—
and Bayesian methods will be used to infer its position using only fluid speed data.

In the terminology of KOHa, dataset y corresponds to modelled fluid speed, obtained from
the appropriate simulations carried out with the sink placed at different locations within the
rectangle. Dataset z corresponds to field observations, which in this case is fluid speed at
several points in the rectangle, obtained from simulations with the sink at the centre of the
rectangle.

The code evaluation design matrix D1 is chosen according to a random Latin hypercube design,
and the observation is calculated using the elliptic package:

> head(D1)

x y x.sink y.sink observation

[1,] 0.77 0.35 -0.17 0.15 -1.87

Robin K. S. Hankin 19

[2,] -0.50 0.45 0.77 0.22 -4.58

[3,] -0.30 0.55 -0.43 0.05 -4.34

[4,] 0.03 0.95 0.97 0.58 0.51

[5,] 0.57 0.15 0.83 0.75 -2.35

[6,] -0.63 0.68 0.10 0.65 -4.47

So the first line shows a simulation with the sink at (-0.17,0.15); the log of the fluid speed
at (0.77, 0.35) is -1.87. There are a total of 30 such observations. Figure 10 shows these
points superimposed on the “true” flow field.

The field observations are similarly determined:

> head(D2)

x y observation

[1,] 0.26 0.63 -2.50

[2,] 0.90 0.53 -2.24

[3,] -0.06 0.31 -0.15

[4,] -0.13 0.40 -3.66

[5,] -0.71 0.44 -4.60

[6,] 0.97 0.15 0.81

showing that the first field observation, at (0.26, 0.63), is -2.5. There are a total of 31 such
observations. Figure 11 shows the first code observation in the context of the “true” flow
field.

Kennedy and O’Hagan give, inter alia, an expression for the likelihood of any value of θ
being the true parameter set (in this case, the true position of the sink) in terms of the code
evaluations and field observations.

Here, function support() calculates the log-likelihood for a pair of coordinates of the sink.
This may be evaluated at the centre of the rectangle, and again at the top left corner:

> support(c(0,1/2)) #centre of the rectangle

[1] 0

> support(c(-1,1)) #top left corner

[1] -52.29362

showing, as expected, that the support is very much larger at the centre of the rectangle than
the edge (here the arbitrary additive constant is such that the support at c(0,1/2) is exactly
zero). It is now possible to identify the position of the sink that corresponds to maximum
support using numerical optimization techniques:

(mle <- optim(c(0,1/2),support))

[1] -0.1842530 0.6190822

20 Elliptic functions with R

Figure 10: Streamlines of first code observation point; field observation point shown as a
cross. The sink is at (-0.17,0.15)

Robin K. S. Hankin 21

Figure 11: Streamlines of “true” flow; field observation points shown as crosses

22 Elliptic functions with R

Thus the maximum likelihood estimate for the sink is a distance of about 0.2 from the true
position. The support at this point is about 3.9 units of likelihood:

> support(mle)

[1] 3.908104

Discussion of Bayesian statistical analysis

The above example shows the ideas of KOH being applied straightforwardly, but with the
novel twist of θ being interpreted as physical characteristics of a fluid flow. In this case θ is
the coordinates of the sink.

The MLE is better supported than the true position by about 3.9 units of likelihood: thus,
in the language of Edwards (1992), the hypothesis of θtrue = (0, 0.5) would not be rejected if
one accepted Edwards’s 2 units of likelihood per degree of freedom.

The discrepancy between θ̂ and θtrue (a distance of about 0.2) may be due to due to the
coarseness of the form adopted for the basis functions, and better results might be obtained by
using a more sophisticated system of model inadequacy than the simple linear form presented
here.

The methods of KOH allow one to make statistically robust statements about the physical
characteristics of an interesting flow that are difficult to make in any other way.

5. Conclusions

Elliptic functions are an interesting and instructive branch of complex analysis, and are
frequently encountered in applied mathematics: here they were used to calculate a potential
flow field in a rectangle.

This paper introduced the R package elliptic, which was then used in conjunction with
Bayesian statistical methods (the BACCO bundle) to make statistically sound inferences
about a flow with uncertain parameters: in this case the position of the sink was estimated
from a sparse and noisy dataset.

Acknowledgements

I would like to acknowledge the many stimulating and helpful comments made by the R-help
list over the years.

References

Abramowitz M, Stegun IA (1965). Handbook of Mathematical Functions. New York: Dover.

Batut C, et al. (2000). “User’s guide to PARI/GP.” Technical reference manual. URL http:

//www.parigp-home.de/.

Chandrasekharan K (1985). Elliptic Functions. Springer-Verlag.

http://www.parigp-home.de/
http://www.parigp-home.de/

Robin K. S. Hankin 23

Chow KW (2002). “A Class of Doubly Periodic Waves for Nonlinear Evolution Equations.”
Wave Motion, 35, 71–90.

Edwards AWF (1992). Likelihood (Expanded Edition). Johns Hopkins.

Feynman RP, Leighton RB, Sands M (1966). The Feynman Lectures on Physics, volume 1.
Addison Wesley.

Hankin RKS (2005). “Introducing BACCO, an R package for Bayesian Analysis of Computer
Code Output.” Journal of Statistical Software, 14(16).

Hankin RKS (2006). “Introducing elliptic, an R package for elliptic and modular functions.”
Journal of Statistical Software, 15.

Johnson ER, McDonald NR (2004). “The Motion of a Vortex Near Two Circular Cylinders.”
Proceedings of the Royal Society of London A, 460, 939–954.

Johnson ER, McDonald NR (2005). “Vortices Near Barriers With Multiple Gaps.” Journal
of Fluid Mechanics, 531, 335–358.

Kennedy MC, O’Hagan A (2001a). “Bayesian Calibration of Computer Models.” Journal of
the Royal Statistical Society B, 63(3), 425–464.

Kennedy MC, O’Hagan A (2001b). “Supplementary Details on Bayesian Calibration of Com-
puter Models.” Technical report, University of Sheffield. URL http://www.shef.ac.uk/

~st1ao/ps/calsup.ps.

Koopman DC, Lee HH (1991). “Second-Order Reversible Reactions and Diffusion in a Slab-
Like Medium: an Application of the Weierstrass Elliptic Pe Function.” Chemical Engineer-
ing Science, 46(4), 1165–1177.

Kotus J, Urbański M (2003). “Hausdorff Dimension and Hausdorff Measures of Julia sets of
elliptic functions.” Bulletin of the London Mathematical Society, 35, 269–275.

Kraniotis GV, Whitehouse SB (2002). “General Relativity, the Cosmological Constant and
Modular Forms.” Classical and Quantum Gravity, 19, 5073–5100.

Milne-Thomson LM (1949). Theoretical Hydrodynamics. Second edition. Macmillan.

R Development Core Team (2005). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Thaller B (1998). “Visualization of Complex Functions.” The Mathematica Journal, 7(2),
163–180.

Weisstein EW (2005). “Jacobi Elliptic Functions.” From Mathworld–a Wolfram web resource;
http://mathworld.wolfram.com/JacobiEllipticFunctions.html.

Whittaker ET, Watson GN (1952). A Course of Modern Analysis. Fourth edition. Cambridge
University Press.

http://www.shef.ac.uk/~st1ao/ps/calsup.ps
http://www.shef.ac.uk/~st1ao/ps/calsup.ps
http://www.R-project.org
http://www.R-project.org

24 Elliptic functions with R

Affiliation:

Robin K. S. Hankin
The University of Stirling
E-mail: hankin.robin@gmail.com

mailto:hankin.robin@gmail.com

	Introduction
	Elliptic functions
	Jacobian elliptic functions

	Numerical evaluation and Jacobi's theta functions
	Package ''elliptic'' in use
	Numerical verification
	Unimodularity
	Contour integration and the residue theorem
	The PARI system

	Visualization of complex functions
	Potential flow
	Bayesian analysis of potential flow
	Discussion of Bayesian statistical analysis

	Conclusions

