Updates to R Programming in Foundations and Applications of
Statistics

Randall Pruim*

Calvin College
Grand Rapids, MI

August, 2013

Since the publication of Foundations and Applications of Statistics, I have been working with col-
leagues from the NSF-funded Project MOSAIC to create and improve the mosaic package. Many func-
tions originally in the fastR package have been moved to the mosaic package; some of these have
subsequently been improved. Additional functionality has been added to the mosaic package over time
that I would have used in Foundations and Applications of Statistics, had they existed at the time the
book was written. This vignette points out some of these features for students and intructors who might
prefer these alternative approaches.

1 Chapter 1: Summarizing Data

1.1 Access to Data

CRAN has requested that we separate the data that were previously in the mosaic package into a separate
package (mosaicData). Starting with version 0.10 of mosaic, mosaic depends on mosaicData, so when
you load the mosaic package, the data sets will be available. In older versions, you will need to load the
mosaicData package separately to access the data sets.

require (mosaicData)
require(mosaicCalc)

1.2 Taking Advantage of Formulas

One of the big changes in mosaic is the wider support for formula interfaces. Several instances of this
approach could be used in Chapter 1. The use of a formula interface has several advantages, the chief
among them being a systematization of numerical summaries, graphical summaries, and linear models
into a common syntactic template:

goal( formula, data = mydata, ...)
Common formula shapes include the following
goal( ” x, data = mydata)

goal( y ~ x, data = mydata)
goal( y ~ x | z, data = mydata)

*rpruim@calvin.edu



The function name typically names the goal for the computation (e.g., histogram(), mean(), tally (),
etc.). The formula is described using variables in data frame mydata (and removing the need for the $
operator or with() constructions).

1.2.1 tallyQ
The tally () function provides a formula interface for constructing tables
require(fastR)

trellis.par.set(theme = col.mosaic())  # change default colors, etc.
table( iris $ Species )

##
## setosa versicolor virginica
#i# 50 50 50

tally( ~ Species, data = iris )

## Species
#Hit setosa versicolor virginica
## 50 50 50

By default, tally () adds marginal totals, but these can be turned off, if desired:

tally( ~ Species, data = iris, margins = FALSE )

## Species
## setosa versicolor virginica
Hit 50 50 50

Tallies can be presented as counts, proportions, or percents:

tally( ~ Species, data = iris, format = "count")
## Species

#i# setosa versicolor virginica

## 50 50 50

tally( ~ Species, data = iris, format = "percent")
## Species

#Hit setosa versicolor virginica

##  33.33333 33.33333  33.33333

tally( ~ Species, data = iris, format = "proportion")
## Species
## setosa versicolor virginica

## 0.3333333 0.3333333 0.3333333

The default format is chosen based on the shape of the formula.



1.2.2 Numerical Summaries

The mosaic package provides a formula interface for a number of numerical summary functions.
mean( ~ Sepal.Length, data = iris)

## [1] 5.843333

median( ~ Sepal.Length, data = iris)

## [1] 5.8

sd( ~ Sepal.Length, data = iris)

## [1] 0.8280661

igr( ~ Sepal.Length, data = iris)

## [1] 1.3

favstats( ~ Sepal.Length, data = iris)

## min Q1 median Q3 max mean sd n missing
## 4.3 5.1 5.8 6.4 7.9 5.843333 0.8280661 150 0

Furthermore, the use of a formula with left and right sides allows us to summarize within groups
without using the summary () function:

mean( Sepal.Length ~ Species, data = iris )

#i# setosa versicolor virginica
## 5.006 5.936 6.588

favstats( Sepal.Length ~ Species, data = iris )

#it Species min Q1 median Q3 max mean sd n missing

## 1 setosa 4.3 4.800 5.0 5.2 5.8 5.006 0.3524897 50 0

## 2 versicolor 4.9 5.600 5.9 6.3 7.0 5.936 0.5161711 50 0

## 3 virginica 4.9 6.225 6.5 6.9 7.9 6.588 0.6358796 50 0
Use

?mean

to get a list of additional functions that take advantage of the formula interface.

1.3 Treating data like distributions

In analogy to functions like pnorm() and gqnorm(), the mosaic package provides pdata() and gdata().



gdata( ~ Sepal.Length, p = 0.5, data = iris )

## p quantile
#i# 0.5 5.8

median( ~ Sepal.Length, data = iris )

## [1] 5.8

pdata( ~ Sepal.Length, 5, data = iris )

## [1] 0.2133333

tally( ~ (Sepal.Length <= 5), data = iris, format = "proportion")

## (Sepal.Length <= 5)
#Hit TRUE FALSE
## 0.2133333 0.7866667

1.4 More plots
1.4.1 bargraph()

The mosaic function barchart () requires the user to first tally the data to be plotted. The bargraph ()
function makes it easy to create bar graphs in the same way other lattice plots are created.

HELPrct)
HELPrct, groups = sex )

bargraph( ~ substance, data
bargraph( ~ substance, data

e
male

100 | =
L 50 L
r 04 L

&

150

100

count
count

50 o

& Y o NG
co‘fo\“ \\’3‘0\ ’6\00‘\ roﬁ‘(\

substance substance

1.4.2 Augmented histogram()

The mosaic package adds several features to the histogram() function (taking advantage of some new
features in the lattice package to change the default panel and prepanel functions used). With these
changes, xhistogram() has been deprecated and histogram() has all the functionality of xhistogram().

For example, one can choose the bins used for a histogram by setting values for center (defaults to 0)
and width. Setting width to 1 is often useful for histograms of integer data with relatively few possible
values.



histogram( ~ weekl, data = fumbles, width = 1 )

0.30 o

0.25 o

0.20 o

0.15 o

Density

0.10 o

0.05 o

0.00 o

T T T T T
0 2 4 6

week1

Here are some additional features:

histogram( ~ Sepal.Length, data = iris, groups = Sepal.Length > 5, h = c(.1,.2) )
histogram( ~ Sepal.Length | Species, data = iris, fit = "normal", v = 6 )

5 6 7 8
| Ll | | ] I — _ | |
setosa versicolor virginica

0.3 -

Density
Density

0.2

0.1 —

0.0 - -

Sepal.Length Sepal.Length

1.4.3 mPlot()

For RStudio users, the mosaic package provides an interactive interface for creating a wide variety of
lattice and ggplot2 graphics using the mPlot () function. The code used to create these plots can
subsequently be exported to the console and copied and pasted into other documents. mPlot () requires
a data frame and a default plot to produce (scatter plot if none is specified) and allows the user to select
variables and several other properties of the plots.

mPlot(iris)
mPlot (HELPrct, "density")

2 Chapter 2: Probability and Random Variables

2.1 The Lady Tasting Tea, rflip(), and do()

For those who want to introduce randomization methods early, the rf1ip() function provides a natural
way to simulate coin tosses, and the do () function does things repeatedly and stores the results in a useful
format. For example, the Lady Tasting Tea example can be handled using the following commands.

rflip(10)



##

## Flipping 10 coins [ Prob(Heads) = 0.5 ]

##

## TTTTTTHTHT

##

## Number of Heads: 2 [Proportion Heads: 0.2]

do(3) * rflip(10)

## n heads tails prop

## 1 10 6 4 0.6
## 2 10 5 5 0.5
## 3 10 3 7 0.3

Flips <- do(1000) * rflip(10)
tally( ~ heads, data = Flips)

## heads
#i#t 1 2 3 4 B 6 7 8 9 10
## 10 36 134 196 258 190 114 51 9 2

histogram( ~ heads, data = Flips, width = 1)

0.25 o

0.20 o

0.15 o

Density

0.10 o

0.05 o

0.00 o

2 4 6 8 10

2.2 Plotting Distributions

We can use plotDist () to plot discrete and continuous distributions in a number of ways.

.5))
.5), kind = 'cdf')

plotDist ("binom", params = list(size = 10,prob
plotDist("binom", params = list(size = 10,prob

0.25 | H 10

0.20 4 L 08 —

0.15 - L 0.6 —

0.10 - 0.4

0.05 - L 02




'hist!')
qu|)

plotDist("binom", params = list(size = 10,prob = .5), kind
plotDist("binom", params = list(size = 10,prob = .5), kind

0.25 -

0.20 =

0.15 -

Density

0.10 -

0.05 -

plotDist("chisq", params = list(df = 4))
plotDist("chisq", params = list(df = 4), kind = 'cdf')

1.0 H —

0.15 | = 08 L

06 -
0.10 | -
0.4 - -

0.05 - -

2.3 Formulas for binom.test ()

binom.test( ~ sex, data = HELPrct )

##

##

##

## data: HELPrct$sex [with success = female]

## number of successes = 107, number of trials = 453, p-value <
## 2.2e-16

## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:

## 0.1978173 0.2780728

## sample estimates:

## probability of success

## 0.2362031

Also, if you only want to extract the p-value or a confidence interval from a hypothesis test object,
the pval () and confint () functions will do this for you.



pval( binom.test( ~ sex, data = HELPrct ) )

## p.value
## 1.931901e-30

confint( binom.test( ~ sex, data = HELPrct ) )

##  probability of success lower upper level
## 1 0.2362031 0.1978173 0.2780728 0.95

3 Chapter 3: Continuous Distributions

3.1 makeFun()

For functions that are essentially algebraic in nature, the mosaic package provides a simplified method
of defining functions via makeFun().

f <- makeFun( x"2 ~ x )
£(3)

## [1] 9

g <- makeFun( A*x"2 + B¥x + C " x, A=1, B=2, C=3)
g(2)

## [1] 11
g2, A=3,B=2,C=1)

## [1] 17

3.2 Calculus with D() and antiD()

The mosaic package provides functions for computing derivatives and antiderivates. Each of these func-
tions returns a function, which can then be evaluated as needed. This is often easier than working with,
for example, integrate () which returns an object from which the value of the integral must be extracted.

fprime <- D(f(x) ~ x)
fprime(2)

## [1] 4
fprime

## function (x)
## 2 *x (x)

gprime <- D(g(x, A, B, C) “x, A=1, B=2, C = 3)
gprime(3)



## [1] 8

gprime(3, A =3, B=2, C = 1)
## [1]1 20

h <- makeFun( sin(x"2) ~ x )

hprime <- D( h(x) ~ x )
plotFun(hprime(x) ~ x, col = "red", x.lim =

c(0,pi))

plotFun( h(x) ~ x, x.lim = c(0,pi), add = TRUE )

hprime(x)

-2 4 L

-6 (-

Antiderivatives work similarly.

plotFun(f(x) ~ x, type = "h")
F <- antiD( f(x) ~ x )
F(1) - F(0)

## [1] 0.3333333

(%)

-1.0 -0.5 0.0 0.5 1.0

4 Chapter 4: Parameter Estimation and Testing

4.1 t.test()

hprime(x)

-2 4

-6

0.5

1.0

15

20

As was the case for binom.test (), we can now use formulas for the 1-sample t-test:

t.test( ~ age, data = HELPrct )

## “age
##

25

3.0




## One Sample t-test

##

## data: age

## t = 98.419, df = 452, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to O
## O5 percent confidence interval:

## 34.94150 36.36534

## sample estimates:

## mean of x

## 35.65342

4.2 Simulations with do()

The simulations done using replicate() can be done with do() instead. do() is slower because it does
more packaging up of the results, but the format of the data returned is often easier to work with. Here’s
some code that could replace the code in Example 4.3.3.

snippet ("mom-betal1") # to define beta.mom

#it

#i#

## snippet(mom-betal1)

HENNCESS Tt

#it

## > beta.mom <- function(x,lower=0.01,upper=100) {

#H# + x.bar <- mean (x)

## + n <- length(x)

## + v <- var(x) * (n-1) / n

#H# + R <- 1/x.bar - 1

## +

#HHt + f <- function(a){ # note: undefined when a=0
# + R *x a2/ ( (a/x.bar)"2 * (a/x.bar + 1) ) - v
## + }

## +

#H + u <- uniroot(f,c(lower,upper))

## +

## + return( c(shapel=u$root, shape2=u$root * R) )
## +

##

## > x <- rbeta(50,2,5); beta.mom(x)
## shapel shape?2
## 1.715167 4.572509

results <- do(1000) * beta.mom(rbeta(50,2,5))
head(results, 2)

#i# shapel shape2

## 1 2.616224 6.199282
## 2 1.921972 5.716372

10



histogram( “shapel, data = results, type = 'density', v =
histogram( “shape2, data = results, type

a N
~

'density', v

0.8 0.3 o

0.6 -

Density
Density

0.4

0.1
0.2 o

0.0 -

T
4 2 4 6 8 10

shapel shape2

The advantages of using do() are even more pronounced when working with 1m(). See the vignettes
in the mosaic package for more examples using do ().

5 Chapter 5: Likelihood-Based Statistics

5.1 Zermelo’s Algorithm

Section 5.6 focuses on the main ideas of the Bradley-Terry model and uses software to do the fitting. But
it is not difficult to simplify the (large) system of partial differential equations involved in the maximum
likelihood estimation into a form that leads to both a natural characterization of the MLE and an iterative
algorithm for approximating the MLE that go back to Zermelo.

6 Chapter 6: Introduction to Linear Models

6.1 Converting models to functions with makeFun ()

makeFun() can convert models made with 1m() and glm() into functions. In both cases the functions
produced is a wrapper around predict(). These functions take care of any transformations of the
explanatory variables but not transformations of the response variable. In the case of glm() models, the
default type is "response" rather than "1ink" since this is more natural for beginners.

ball.model <- Im( time ~ sqrt(height), data = balldrop)
time <- makeFun(ball.model)
time( height = 0.8 )

## 1
## 0.4014007

time( height = 0.8, interval = "confidence" )

## fit lwr upr
## 1 0.4014007 0.3992979 0.4035034

6.2 And adding fitted functions to plots with plotFun()

We can add the model fit function to our scatter plot using plotFun().

11



xyplot( time

~ height, data = balldrop )
plotFun( time(height) ~ height, add = TRUE )

0.50 o

0.45 o

0.40 o

time

0.35 o

0.30 o

0.25 o

0.4

0.6

0.8 1.0 1.2
height

7 Chapter 7: More Linear Models

time

0.50 o

0.45 o

0.40 o

0.35 o

0.30 o

0.25 o

7.1 TukeyHSD() no longer requires use of aov()

# TukeyHSD() can take a model created by Im()

0.4 0.6

model <- 1m( pollution ~ location, data = airpollution)

TukeyHSD (model)

##  Tukey multiple comparisons of means
## 95, family-wise confidence level

##

## Fit: aov(formula

##

## $location

##

## Plains Suburb-Hill Suburb
## Urban City-Hill Suburb
## Urban City-Plains Suburb

=X)

diff lwr

# we can even let TukeyHSD build the model for us
TukeyHSD( pollution ~ location, data = airpollution)

##  Tukey multiple comparisons of means
#i# 95% family-wise confidence level

##

## Fit: aov(formula

##

## $location

##

## Plains Suburb-Hill Suburb
## Urban City-Hill Suburb
## Urban City-Plains Suburb

= x)

diff lwr

12

upr

-6 -40.28963 28.28963
15 -19.28963 49.28963
21 -13.28963 55.28963

upr

-6 -40.28963 28.28963
15 -19.28963 49.28963
21 -13.28963 55.28963

p adj
0.7643461
0.3019190
0.1600867

p adj
0.7643461
0.3019190
0.1600867

0.8
height

1.0

1.2




	Chapter 1: Summarizing Data
	Access to Data
	Taking Advantage of Formulas
	tally()
	Numerical Summaries

	Treating data like distributions
	More plots
	bargraph()
	Augmented histogram()
	mPlot()


	Chapter 2: Probability and Random Variables
	The Lady Tasting Tea, rflip(), and do()
	Plotting Distributions
	Formulas for binom.test()

	Chapter 3: Continuous Distributions
	makeFun()
	Calculus with D() and antiD()

	Chapter 4: Parameter Estimation and Testing
	t.test()
	Simulations with do()

	Chapter 5: Likelihood-Based Statistics
	Zermelo's Algorithm

	Chapter 6: Introduction to Linear Models
	Converting models to functions with makeFun()
	And adding fitted functions to plots with plotFun()

	Chapter 7: More Linear Models
	TukeyHSD() no longer requires use of aov()


