Nothing
## ----message=FALSE, echo=FALSE------------------------------------------------
library(unittest)
# Redirect ok() output to stderr
options(unittest.output = stderr())
library(gadget3)
set.seed(123)
## ----warning = FALSE, message = FALSE-----------------------------------------
### Modelling maturity & sex with multiple stocks
## ----warning = FALSE, message = FALSE-----------------------------------------
library(gadget3)
library(dplyr)
actions <- list()
area_names <- g3_areas(c('IXa', 'IXb'))
# Create time definitions ####################
actions_time <- list(
g3a_time(
1979L, 2023L,
step_lengths = c(3L, 3L, 3L, 3L)),
NULL)
actions <- c(actions, actions_time)
## -----------------------------------------------------------------------------
# Create stock definition for fish ####################
st_imm <- g3_stock(c(species = "fish", 'imm'), seq(5L, 25L, 5)) |>
g3s_livesonareas(area_names["IXa"]) |>
g3s_age(1L, 5L)
st_mat <- g3_stock(c(species = "fish", 'mat'), seq(5L, 25L, 5)) |>
g3s_livesonareas(area_names["IXa"]) |>
g3s_age(3L, 10L)
stocks = list(imm = st_imm, mat = st_mat)
## -----------------------------------------------------------------------------
actions_st_imm <- list(
g3a_growmature(st_imm,
g3a_grow_impl_bbinom(
maxlengthgroupgrowth = 4L ),
# Add maturation
maturity_f = g3a_mature_continuous(),
output_stocks = list(st_mat),
transition_f = ~TRUE ),
g3a_naturalmortality(st_imm),
g3a_initialconditions_normalcv(st_imm),
g3a_renewal_normalparam(st_imm),
g3a_age(st_imm, output_stocks = list(st_mat)),
NULL)
actions_st_mat <- list(
g3a_growmature(st_mat,
g3a_grow_impl_bbinom(
maxlengthgroupgrowth = 4L )),
g3a_naturalmortality(st_mat),
g3a_initialconditions_normalcv(st_mat),
g3a_age(st_mat),
NULL)
actions_likelihood_st <- list(
g3l_understocking(stocks, nll_breakdown = TRUE),
NULL)
actions <- c(actions, actions_st_imm, actions_st_mat, actions_likelihood_st)
## -----------------------------------------------------------------------------
# Fleet data for f_surv #################################
# Landings data: For each year/step/area
expand.grid(year = 1990:1994, step = 2, area = 'IXa') |>
# Generate a random total landings by weight
mutate(weight = rnorm(n(), mean = 1000, sd = 100)) |>
# Assign result to landings_f_surv
identity() -> landings_f_surv
# Length distribution data: Generate 100 random samples in each year/step/area
expand.grid(year = 1990:1994, step = 2, area = 'IXa', length = rep(NA, 100)) |>
# Generate random lengths for these samples
mutate(length = rnorm(n(), mean = 50, sd = 20)) |>
# Save unagggregated data into ldist_f_surv.raw
identity() -> ldist_f_surv.raw
# Aggregate .raw data
ldist_f_surv.raw |>
# Group into length bins
group_by(
year = year,
step = step,
length = cut(length, breaks = c(seq(0, 80, 20), Inf), right = FALSE) ) |>
# Report count in each length bin
summarise(number = n(), .groups = 'keep') |>
# Save into ldist_f_surv
identity() -> ldist_f_surv
# Assume 5 * 5 samples in each year/step/area
expand.grid(year = 1990:1994, step = 2, area = 'IXa', age = rep(NA, 5), length = rep(NA, 5)) |>
# Generate random lengths/ages for these samples
mutate(length = rnorm(n(), mean = 50, sd = 20)) |>
# Generate random whole numbers for age
mutate(age = floor(runif(n(), min = 1, max = 5))) |>
# Group into length/age bins
group_by(
year = year,
step = step,
age = age,
length = cut(length, breaks = c(seq(0, 80, 20), Inf), right = FALSE) ) |>
# Report count in each length bin
summarise(number = n(), .groups = 'keep') ->
aldist_f_surv
## -----------------------------------------------------------------------------
# Create fleet definition for f_surv ####################
f_surv <- g3_fleet("f_surv") |> g3s_livesonareas(area_names["IXa"])
actions_f_surv <- list(
g3a_predate_fleet(
f_surv,
stocks,
suitabilities = g3_suitability_exponentiall50(by_stock = 'species'),
catchability_f = g3a_predate_catchability_totalfleet(
g3_timeareadata("landings_f_surv", landings_f_surv, "weight", areas = area_names))),
NULL)
actions_likelihood_f_surv <- list(
g3l_catchdistribution(
"ldist_f_surv",
obs_data = ldist_f_surv,
fleets = list(f_surv),
stocks = stocks,
function_f = g3l_distribution_sumofsquares(),
area_group = area_names,
report = TRUE,
nll_breakdown = TRUE),
g3l_catchdistribution(
"aldist_f_surv",
obs_data = aldist_f_surv,
fleets = list(f_surv),
stocks = stocks,
function_f = g3l_distribution_sumofsquares(),
area_group = area_names,
report = TRUE,
nll_breakdown = TRUE),
NULL)
actions <- c(actions, actions_f_surv, actions_likelihood_f_surv)
## -----------------------------------------------------------------------------
simple_model <- g3_to_r(list(g3a_time(1990, 1994), g3a_predate_fleet(
f_surv,
stocks,
suitabilities = g3_suitability_exponentiall50(by_stock = TRUE),
catchability_f = g3a_predate_catchability_totalfleet(1) )))
names(attr(simple_model, "parameter_template"))
## ----message=FALSE, echo=FALSE------------------------------------------------
ok(ut_cmp_identical(sort(names(attr(simple_model, "parameter_template")), method = "radix"), c(
"fish_imm.f_surv.alpha",
"fish_imm.f_surv.l50",
"fish_mat.f_surv.alpha",
"fish_mat.f_surv.l50",
"project_years", "retro_years",
NULL)), "Params for simple_model, by_stock = TRUE")
## -----------------------------------------------------------------------------
simple_model <- g3_to_r(list(g3a_time(1990, 1994), g3a_predate_fleet(
f_surv,
stocks,
suitabilities = g3_suitability_exponentiall50(by_stock = 'species'),
catchability_f = g3a_predate_catchability_totalfleet(1) )))
names(attr(simple_model, "parameter_template"))
## ----message=FALSE, echo=FALSE------------------------------------------------
ok(ut_cmp_identical(sort(names(attr(simple_model, "parameter_template")), method = "radix"), c(
"fish.f_surv.alpha",
"fish.f_surv.l50",
"project_years", "retro_years",
NULL)), "Params for simple_model, by_stock = 'species'")
## -----------------------------------------------------------------------------
simple_model <- g3_to_r(list(g3a_time(1990, 1994), g3a_predate_fleet(
f_surv,
stocks,
suitabilities = g3_suitability_exponentiall50(
l50 = g3_parameterized("l50", by_stock = 'species', by_predator = TRUE, by_year = TRUE)),
catchability_f = g3a_predate_catchability_totalfleet(1) )))
names(attr(simple_model, "parameter_template"))
## ----message=FALSE, echo=FALSE------------------------------------------------
ok(ut_cmp_identical(sort(names(attr(simple_model, "parameter_template")), method = "radix"), c(
"fish.f_surv.l50.1990",
"fish.f_surv.l50.1991",
"fish.f_surv.l50.1992",
"fish.f_surv.l50.1993",
"fish.f_surv.l50.1994",
"fish_imm.f_surv.alpha",
"fish_mat.f_surv.alpha",
"project_years", "retro_years",
NULL)), "Params for simple_model, by_year = TRUE")
## -----------------------------------------------------------------------------
# Create abundance index for si_cpue ########################
# Generate random data
expand.grid(year = 1990:1994, step = 3, area = 'IXa') |>
# Fill in a weight column with total biomass for the year/step/area combination
mutate(weight = runif(n(), min = 10000, max = 100000)) ->
dist_si_cpue
actions_likelihood_si_cpue <- list(
g3l_abundancedistribution(
"dist_si_cpue",
dist_si_cpue,
stocks = stocks,
function_f = g3l_distribution_surveyindices_log(alpha = NULL, beta = 1),
area_group = area_names,
report = TRUE,
nll_breakdown = TRUE),
NULL)
actions <- c(actions, actions_likelihood_si_cpue)
## -----------------------------------------------------------------------------
# Create model objective function ####################
model_code <- g3_to_tmb(c(actions, list(
g3a_report_detail(actions),
g3l_bounds_penalty(actions) )))
## -----------------------------------------------------------------------------
# Guess l50 / linf based on stock sizes
estimate_l50 <- g3_stock_def(st_imm, "midlen")[[length(g3_stock_def(st_imm, "midlen")) / 2]]
estimate_linf <- max(g3_stock_def(st_imm, "midlen"))
estimate_t0 <- g3_stock_def(st_imm, "minage") - 0.8
attr(model_code, "parameter_template") |>
g3_init_val("*.rec|init.scalar", 10, lower = 0.001, upper = 200) |>
g3_init_val("*.init.#", 10, lower = 0.001, upper = 200) |>
g3_init_val("*.rec.#", 100, lower = 1e-6, upper = 1000) |>
g3_init_val("*.rec.sd", 5, lower = 4, upper = 20) |>
g3_init_val("*.M.#", 0.15, lower = 0.001, upper = 1) |>
g3_init_val("init.F", 0.5, lower = 0.1, upper = 1) |>
g3_init_val("*.Linf", estimate_linf, spread = 0.2) |>
g3_init_val("*.K", 0.3, lower = 0.04, upper = 1.2) |>
g3_init_val("*.t0", estimate_t0, spread = 2) |>
g3_init_val("*.walpha", 0.01, optimise = FALSE) |>
g3_init_val("*.wbeta", 3, optimise = FALSE) |>
g3_init_val("*.*.alpha", 0.07, lower = 0.01, upper = 0.2) |>
g3_init_val("*.*.l50", estimate_l50, spread = 0.25) |>
g3_init_val("*.bbin", 100, lower = 1e-05, upper = 1000) |>
identity() -> params.in
## ----eval=nzchar(Sys.getenv('G3_TEST_TMB'))-----------------------------------
# # Optimise model ################################
# obj.fn <- g3_tmb_adfun(model_code, params.in)
#
# params.out <- gadgetutils::g3_iterative(getwd(),
# wgts = "WGTS",
# model = model_code,
# params.in = params.in,
# grouping = list(
# fleet = c("ldist_f_surv", "aldist_f_surv"),
# abund = c("dist_si_cpue")),
# method = "BFGS",
# control = list(maxit = 1000, reltol = 1e-10),
# cv_floor = 0.05)
## ----eval=nzchar(Sys.getenv('G3_TEST_TMB'))-----------------------------------
# # Generate detailed report ######################
# fit <- gadgetutils::g3_fit(model_code, params.out)
# gadgetplots::gadget_plots(fit, "figs", file_type = "html")
## ----eval=FALSE---------------------------------------------------------------
# utils::browseURL("figs/model_output_figures.html")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.