plot.xtree.reg: Plot function for the Pathmox Segmentation Trees: linaer...

Description Usage Arguments Author(s) References Examples

View source: R/plot_plot.xtree.reg.R

Description

The function plot.xtree.reg allows to drow PATHMOX tree for linear and LAD regression

Usage

1
2
3
4
5
## S3 method for class 'xtree.reg'
plot(x, root.col = "grey", node.col = "orange",
  leaf.col = "green2", shadow.size = 0.003, node.shadow = "red",
  leaf.shadow = "darkgreen", cex = 0.7, seg.col = "blue3", lwd = 1,
  show.pval = TRUE, pval.col = "blue", main = NULL, cex.main = 1, ...)

Arguments

x

An object of class "xtree.reg" returned by reg.pathmox

root.col

Fill color of root node.

node.col

Fill color of child nodes.

leaf.col

Fill color of col.

shadow.size

Relative size of shadows.

node.shadow

Color of shadow of child nodes.

leaf.shadow

Color of shadow of leaf nodes.

cex

A numerical value indicating the magnification to be used for plotting text.

seg.col

The color to be used for the labels of the segmentation variables.

lwd

The line width, a positive number, defaulting to 1.

show.pval

Logical value indicating whether the p-values should be plotted.

pval.col

The color to be used for the labels of the p-values.

main

A main title for the plot.

cex.main

The magnification to be used for the main title.

...

Further arguments are ignored.

Author(s)

Giuseppe Lamberti

References

Aluja, T. Lamberti, G. Sanchez, G. (2013). Modeling with heterogeneity. Meetings of Italian Statistical Society, Advances in Latent Variables - Methods, Models and Applications. Brescia.

Lamberti, G. (2014) Modeling with Heterogeneity. PhD Dissertation.

Sanchez, G. (2009) PATHMOX Approach: Segmentation Trees in Partial Least Squares Path Modeling. PhD Dissertation.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
## Not run: 
## example of LM in alumni satisfaction

data(fibtelereg)

#identify the segmentation variables
segvar = fibtelereg[,2:11]

data.fib = fibtelereg[,12:18]

segvar$Age 		= factor(segvar$Age, ordered=T)
segvar$Salary 	= factor(segvar$Salary,
		levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
segvar$Accgrade = factor(segvar$Accgrade,
		levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
segvar$Grade 	= factor(segvar$Grade,
		levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)

 #regression PATHMOX
fib.reg.pathmox=reg.pathmox(Satisfact~.,data=data.fib,segvar,
			signif=0.05,deep=2,method="lm",size=0.15)

plot(fib.reg.pathmox)


## End(Not run)
data(fibtelereg)

#identify the segmentation variables
segvar= fibtelereg[1:50,3:4]

#select the variables
data.fib=fibtelereg[1:50,12:18]

fib.reg.pathmox=reg.pathmox(Satisfact~.,data=data.fib,segvar,
		signif=0.05,deep=1,method="lm",size=0.15)

plot(fib.reg.pathmox)

genpathmox documentation built on May 31, 2017, 8:26 p.m.

Search within the genpathmox package
Search all R packages, documentation and source code