Nothing
## ---- echo=FALSE--------------------------------------------------------------
library(glmnetUtils)
library(MASS)
## -----------------------------------------------------------------------------
# least squares regression
(mtcarsMod <- glmnet(mpg ~ cyl + disp + hp, data=mtcars))
# multinomial logistic regression with specified elastic net alpha parameter
(irisMod <- glmnet(Species ~ ., data=iris, family="multinomial", alpha=0.5))
# Poisson regression with an offset
(InsMod <- glmnet(Claims ~ District + Group + Age, data=MASS::Insurance,
family="poisson", offset=log(Holders)))
## ---- eval=FALSE--------------------------------------------------------------
# # least squares regression: get predictions for lambda=1
# predict(mtcarsMod, newdata=mtcars, s=1)
#
# # multinomial logistic regression: get predicted class
# predict(irisMod, newdata=iris, type="class")
#
# # Poisson regression: need to specify offset
# predict(InsMod, newdata=MASS::Insurance, offset=log(Holders))
## -----------------------------------------------------------------------------
mtcarsX <- as.matrix(mtcars[c("cyl", "disp", "hp")])
mtcarsY <- mtcars$mpg
mtcarsMod2 <- glmnet(mtcarsX, mtcarsY)
summary(as.numeric(predict(mtcarsMod, mtcars) -
predict(mtcarsMod2, mtcarsX)))
## ---- eval=FALSE--------------------------------------------------------------
# # generate sample (uncorrelated) data of a given size
# makeSampleData <- function(N, P)
# {
# X <- matrix(rnorm(N*P), nrow=N)
# data.frame(y=rnorm(N), X)
# }
#
# # test for three sizes: 100/1000/10000 predictors
# df1 <- makeSampleData(N=1000, P=100)
# df2 <- makeSampleData(N=1000, P=1000)
# df3 <- makeSampleData(N=1000, P=10000)
#
# library(microbenchmark)
# res <- microbenchmark(
# glmnet(y ~ ., df1, use.model.frame=TRUE),
# glmnet(y ~ ., df1, use.model.frame=FALSE),
# glmnet(y ~ ., df2, use.model.frame=TRUE),
# glmnet(y ~ ., df2, use.model.frame=FALSE),
# glmnet(y ~ ., df3, use.model.frame=TRUE),
# glmnet(y ~ ., df3, use.model.frame=FALSE),
# times=10
# )
# print(res, unit="s", digits=2)
## ---- eval=FALSE--------------------------------------------------------------
# df4 <- makeSampleData(N=1000, P=100000)
#
# glmnet(y ~ ., df4, use.model.frame=TRUE)
## ---- eval=FALSE--------------------------------------------------------------
# glmnet(y ~ ., df4, use.model.frame=FALSE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.