Description Usage Arguments Value Author(s) References See Also Examples
Setup of a variational autoencoder (VAE) model.
1 2 3 |
dim |
|
activation |
|
batch.norm |
|
dropout.rate |
|
sd |
positive |
loss.type |
|
nGPU |
non-negative |
... |
additional arguments passed to |
VAE_model()
returns a list with components
model
:VAE model (a keras object inheriting from
the classes "keras.engine.training.Model"
,
"keras.engine.network.Network"
,
"keras.engine.base_layer.Layer"
and "python.builtin.object"
).
encoder
:the encoder (a keras object as
model
).
generator
:the generator (a keras object as
model
).
type
:character
string indicating
the type of model ("VAE"
).
dim
:see above.
activation
:see above.
batch.norm
:see above.
dropout.rate
:see above.
sd
:see above.
loss.type
:see above.
dim.train
:dimension of the training data (NA
unless trained).
batch.size
:batch size (NA
unless trained).
nepoch
:number of epochs (NA
unless trained).
Marius Hofert and Avinash Prasad
Kingma, D. P. and Welling, M. (2014). Stochastic gradient VB and the variational auto-encoder. Second International Conference on Learning Representations (ICLR). See https://keras.rstudio.com/articles/examples/variational_autoencoder.html
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.