src/ratfor/dnewton.r

#:::::::::::::
#   dnewton
#:::::::::::::

subroutine  dnewton (cd, nxis, q, nxi, rs, nobs, cntsum, cnt,
                     qdrs, nqd, nt, bwt, qdwt, prec, maxiter,
                     mchpr, jpvt, wk, info)

integer  nxis, nxi, nobs,  nqd, nt, maxiter, jpvt(*), info
double precision  cd(*), q(nxi,*), rs(nxis,*), cntsum, cnt(*), qdrs(nqd,*),
                  bwt(*), qdwt(nt,*), prec, mchpr, wk(*)

integer  imrs, iwt, iwtsum, ifit, imu, imuwk, iv, ivwk, icdnew,
         iwtnew, iwtsumnew, ifitnew, iwk

imrs = 1
iwt = imrs + max0 (nxis, 3)
iwtsum = iwt + nqd*nt
ifit = iwtsum + nt
imu = ifit + nobs
imuwk = imu + nxis
iv = imuwk + nxis
ivwk = iv + nxis*nxis
icdnew = ivwk + nxis*nxis
iwtnew = icdnew + nxis
iwtsumnew = iwtnew + nqd*nt
ifitnew = iwtsumnew + nt
iwk = ifitnew + nobs

call  dnewton1 (cd, nxis, q, nxi, rs, nobs, cntsum, cnt, qdrs, nqd,
                nt, bwt, qdwt, prec, maxiter, mchpr, wk(imrs), wk(iwt),
                wk(iwtsum), wk(ifit), wk(imu), wk(imuwk), wk(iv), wk(ivwk),
                jpvt, wk(icdnew), wk(iwtnew), wk(iwtsumnew), wk(ifitnew),
                wk(iwk), info)

return
end


#::::::::::::::
#   dnewton1
#::::::::::::::

subroutine  dnewton1 (cd, nxis, q, nxi, rs, nobs, cntsum, cnt,
                      qdrs, nqd, nt, bwt, qdwt, prec, maxiter,
                      mchpr, mrs, wt, wtsum, fit, mu, muwk, v, vwk,
                      jpvt, cdnew, wtnew, wtsumnew, fitnew, wk, info)

integer  nxis, nxi, nobs, nqd, nt, maxiter, jpvt(*), info
double precision  cd(*), q(nxi,*), rs(nxis,*), cntsum, cnt(*), qdrs(nqd,*),
                  bwt(*), qdwt(nt,*), prec, mchpr, mrs(*), wt(nt,*), wtsum(*),
                  fit(*), mu(*), muwk(*), v(nxis,*), vwk(nxis,*), cdnew(*),
                  wtnew(nt,*), wtsumnew(*), fitnew(*), wk(*)

integer  i, j, k, m, iter, flag, rkv, idamax, infowk
double precision  norm, tmp, ddot, fitmean, lkhd, mumax, lkhdnew, disc, disc0, trc

#   Calculate constants
info = 0
for (i=1;i<=nxis;i=i+1) {
    mrs(i) = 0.d0
    if (!(cntsum>0.d0)) {
        for (j=1;j<=nobs;j=j+1)  mrs(i) = mrs(i) + rs(i,j)
        mrs(i) = mrs(i) / dble (nobs)
    }
    else {
        for (j=1;j<=nobs;j=j+1)  mrs(i) = mrs(i) + rs(i,j) * cnt(j)
        mrs(i) = mrs(i) / cntsum
    }
}
#   Initialization
for (m=1;m<=nt;m=m+1)  wtsum(m) = 0.d0
for (i=1;i<=nqd;i=i+1) {
    tmp = dexp (ddot (nxis, qdrs(i,1), nqd, cd, 1))
    for (m=1;m<=nt;m=m+1) {
        wt(m,i) = qdwt(m,i) * tmp
        wtsum(m) = wtsum(m) + wt(m,i)
    }
}
norm = 0.d0
for (m=1;m<=nt;m=m+1)  norm = norm + bwt(m) * dlog (wtsum(m))
fitmean = 0.d0
for (i=1;i<=nobs;i=i+1) {
    tmp = ddot (nxis, rs(1,i), 1, cd, 1)
    fit(i) = dexp (tmp)
    if (cntsum>0.d0)  tmp = tmp * cnt(i)
    fitmean = fitmean + tmp
}
if (!(cntsum>0.d0))  fitmean = fitmean / dble (nobs)
else  fitmean = fitmean / cntsum
call  dsymv ('u', nxi, 1.d0, q, nxi, cd, 1, 0.d0, wk, 1)
lkhd = ddot (nxi, cd, 1, wk, 1) / 2.d0 - fitmean + norm
iter = 0
flag = 0
#   Iteration
repeat {
    iter = iter + 1
    # Calculate hessian and gradient
    call  dset(nxis, 0.d0, mu, 1)
    call  dset(nxis*nxis, 0.d0, v, 1)
    for (m=1;m<=nt;m=m+1) {
        for (i=1;i<=nxis;i=i+1)
            muwk(i) = - ddot (nqd, wt(m,1), nt, qdrs(1,i), 1) / wtsum(m)
        for (i=1;i<=nxis;i=i+1) {
            for (j=i;j<=nxis;j=j+1) {
                vwk(i,j) = 0.d0
                for (k=1;k<=nqd;k=k+1)
                    vwk(i,j) = vwk(i,j) + wt(m,k) * qdrs(k,i) * qdrs(k,j)
                vwk(i,j) = vwk(i,j) / wtsum(m) - muwk(i) * muwk(j)
            }
        }
        call  daxpy (nxis, bwt(m), muwk, 1, mu, 1)
        call  daxpy (nxis*nxis, bwt(m), vwk, 1, v, 1)
    }
    for (i=1;i<=nxi;i=i+1) {
        for (j=i;j<=nxi;j=j+1)  v(i,j) = v(i,j) + q(i,j)
    }
    call  daxpy (nxis, 1.d0, mrs, 1, mu, 1)
    call  dsymv ('u', nxi, -1.d0, q, nxi, cd, 1, 1.d0, mu, 1)
    mumax = dabs(mu(idamax(nxis, mu, 1)))
    #   Cholesky factorization
    for (i=1;i<=nxis;i=i+1)  jpvt(i) = 0
    call  dchdc (v, nxis, nxis, wk, jpvt, 1, rkv)
    while (v(rkv,rkv)<v(1,1)*dsqrt(mchpr))  rkv = rkv - 1
    for (i=rkv+1;i<=nxis;i=i+1) {
        v(i,i) = v(1,1)
        call  dset (i-rkv-1, 0.d0, v(rkv+1,i), 1)
    }
    #   Update coefficients
    repeat {
        call  dcopy (nxis, mu, 1, cdnew, 1)
        call  dprmut (cdnew, nxis, jpvt, 0)
        call  dtrsl (v, nxis, nxis, cdnew, 11, infowk)
        call  dset (nxis-rkv, 0.d0, cdnew(rkv+1), 1)
        call  dtrsl (v, nxis, nxis, cdnew, 01, infowk)
        call  dprmut (cdnew, nxis, jpvt, 1)
        call  daxpy (nxis, 1.d0, cd, 1, cdnew, 1)
        for (m=1;m<=nt;m=m+1)  wtsumnew(m) = 0.d0
        for (i=1;i<=nqd;i=i+1) {
            tmp = ddot (nxis, qdrs(i,1), nqd, cdnew, 1)
            if (tmp>3.d2) {
                flag = flag + 1
                break
            }
            tmp = dexp (tmp)
            for (m=1;m<=nt;m=m+1) {
                wtnew(m,i) = qdwt(m,i) * tmp
                wtsumnew(m) = wtsumnew(m) + wtnew(m,i)
            }
        }
        norm = 0.d0
        for (m=1;m<=nt;m=m+1)  norm = norm + bwt(m) * dlog (wtsumnew(m))
        if ((flag==0)|(flag==2)) {
            fitmean = 0.d0
            for (i=1;i<=nobs;i=i+1) {
                tmp = ddot (nxis, rs(1,i), 1, cdnew, 1)
                if (tmp>3.d2) {
                    flag = flag + 1
                    break
                }
                fitnew(i) = dexp (tmp)
                if (cntsum>0.d0)  tmp = tmp * cnt(i)
                fitmean = fitmean + tmp
            }
            if (!(cntsum>0.d0))  fitmean = fitmean / dble (nobs)
            else  fitmean = fitmean / cntsum
            call  dsymv ('u', nxi, 1.d0, q, nxi, cdnew, 1, 0.d0, wk, 1)
            lkhdnew = ddot (nxi, cdnew, 1, wk, 1) / 2.d0 - fitmean + norm
        }
        #   Reset iteration with uniform starting value
        if (flag==1) {
            call  dset (nxis, 0.d0, cd, 1)
            call  dcopy (nt*nqd, qdwt, 1, wt, 1)
            lkhd = 0.d0
            for (m=1;m<=nt;m=m+1) {
                wtsum(m) = 0.d0
                for (i=1;i<=nqd;i=i+1)  wtsum(m) = wtsum(m) + wt(m,i)
                lkhd = lkhd + bwt(m) * dlog (wtsum(m))
            }
            call  dset (nobs, 1.d0, fit, 1)
            iter = 0
            break
        }
        if (flag==3)  break
        if (lkhdnew-lkhd<1.d1*(1.d0+dabs(lkhd))*mchpr)  break
        call  dscal (nxis, .5d0, mu, 1)
        if (dabs(mu(idamax(nxis, mu, 1))/mumax)<1.d1*mchpr)  break
    }
    if (flag==1) {
        flag = 2
        next
    }
    if (flag==3) {
        info = 1
        return
    }
    #   Calculate convergence criterion
    disc = 0.d0
    for (i=1;i<=nqd;i=i+1) {
        for (m=1;m<=nt;m=m+1)
            disc = dmax1 (disc, dabs(wt(m,i)-wtnew(m,i))/(1.d0+dabs(wt(m,i))))
    }
    for (i=1;i<=nobs;i=i+1)
        disc = dmax1 (disc, dabs(fit(i)-fitnew(i))/(1.d0+dabs(fit(i))))
    disc = dmax1 (disc, (mumax/(1.d0+dabs(lkhd)))**2)
    disc0 = dmax1 ((mumax/(1.d0+lkhd))**2, dabs(lkhd-lkhdnew)/(1.d0+dabs(lkhd)))
    #   Set to new values
    call  dcopy (nxis, cdnew, 1, cd, 1)
    call  dcopy (nqd*nt, wtnew, 1, wt, 1)
    call  dcopy (nt, wtsumnew, 1, wtsum, 1)
    call  dcopy (nobs, fitnew, 1, fit, 1)
    lkhd = lkhdnew
    #   Check convergence
    if (disc0<prec)  break
    if (disc<prec)  break
    if (iter<maxiter)  next
    if (flag==0) {
        #   Reset iteration with uniform starting value
        call  dset (nxis, 0.d0, cd, 1)
        call  dcopy (nt*nqd, qdwt, 1, wt, 1)
        lkhd = 0.d0
        for (m=1;m<=nt;m=m+1) {
            wtsum(m) = 0.d0
            for (i=1;i<=nqd;i=i+1) wtsum(m) = wtsum(m) + wt(m,i)
            lkhd = lkhd + bwt(m) * dlog (wtsum(m))
        }
        call  dset (nobs, 1.d0, fit, 1)
        iter = 0
        flag = 2
    }
    else {
        info = 2
        break
    }
}
#   Calculate proxy loss
for (i=1;i<=nobs;i=i+1) {
    call  daxpy (nxis, -1.d0, mrs, 1, rs(1,i), 1)
    call  dprmut (rs(1,i), nxis, jpvt, 0)
    if (cntsum>0.d0)  call  dscal (nxis, dsqrt(cnt(i)), rs(1,i), 1)
    call  dtrsl (v, nxis, nxis, rs(1,i), 11, infowk)
    if (nxis-rkv>0)  call  dset (nxis-rkv, 0.d0, rs(rkv+1,i), 1)
}
trc = ddot (nobs*nxis, rs, 1, rs, 1)
if (!(cntsum>0.d0)) {
    trc = trc / dble(nobs) / (dble(nobs)-1.d0)
    lkhd = 0.d0
    for (i=1;i<=nobs;i=i+1)  lkhd = lkhd + dlog (fit(i))
    lkhd = lkhd / dble (nobs)
}
else {
    trc = trc / cntsum / (cntsum-1.d0)
    lkhd = 0.d0
    for (i=1;i<=nobs;i=i+1)  lkhd = lkhd + cnt(i) * dlog (fit(i))
    lkhd = lkhd / cntsum
}
for (m=1;m<=nt;m=m+1)  lkhd = lkhd - bwt(m) * dlog (wtsum(m))
mrs(1) = lkhd
mrs(2) = trc

return
end

Try the gss package in your browser

Any scripts or data that you put into this service are public.

gss documentation built on Aug. 16, 2023, 9:07 a.m.