Nothing
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
cppdbbinom <- function(x, size, alpha, beta, log_prob = FALSE) {
.Call('_hahmmr_cppdbbinom', PACKAGE = 'hahmmr', x, size, alpha, beta, log_prob)
}
cpp_dgpois <- function(x, alpha, beta, log_prob = FALSE) {
.Call('_hahmmr_cpp_dgpois', PACKAGE = 'hahmmr', x, alpha, beta, log_prob)
}
#' logSumExp function
#'
#' @param x NumericVector
#' @return double logSumExp of x
#' @export
logSumExp <- function(x) {
.Call('_hahmmr_logSumExp', PACKAGE = 'hahmmr', x)
}
likelihood_compute <- function(logphi, logprob, logPi, n, m) {
.Call('_hahmmr_likelihood_compute', PACKAGE = 'hahmmr', logphi, logprob, logPi, n, m)
}
forward_backward_compute <- function(logphi, logprob, logPi, n, m) {
.Call('_hahmmr_forward_backward_compute', PACKAGE = 'hahmmr', logphi, logprob, logPi, n, m)
}
viterbi_compute <- function(log_delta, logprob, logPi, n, m, nu, z) {
.Call('_hahmmr_viterbi_compute', PACKAGE = 'hahmmr', log_delta, logprob, logPi, n, m, nu, z)
}
roman2int_internal <- function(letters, nchar) {
.Call('_hahmmr_roman2int_internal', PACKAGE = 'hahmmr', letters, nchar)
}
#' Fit MLE of log-normal Poisson model
#'
#' @param Y_obs Vector of observed counts
#' @param lambda_ref Vector of reference rates
#' @param d integer Total depth
#' @return NumericVector MLE estimates of mu and sigma
#' @export
fit_lnpois_cpp <- function(Y_obs, lambda_ref, d) {
.Call('_hahmmr_fit_lnpois_cpp', PACKAGE = 'hahmmr', Y_obs, lambda_ref, d)
}
poilog1 <- function(x, my, sig) {
.Call('_hahmmr_poilog1', PACKAGE = 'hahmmr', x, my, sig)
}
l_lnpois_cpp <- function(Y_obs, lambda_ref, d, mu, sig, phi = 1.0) {
.Call('_hahmmr_l_lnpois_cpp', PACKAGE = 'hahmmr', Y_obs, lambda_ref, d, mu, sig, phi)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.