Nothing
#'@title Anomaly and change point detector using RED
#'@description Anomaly and change point detection using RED
#'The RED model adjusts to the time series. Observations distant from the model are labeled as anomalies.
#'It wraps the EMD model presented in the hht library.
#'@param sw_size sliding window size (default 30)
#'@param noise noise
#'@param trials trials
#'@param red_cp red change point
#'@param volatility_cp volatility change point
#'@param trend_cp trend change point
#'@return `hcp_red` object
#'@examples
#'library(daltoolbox)
#'
#'#loading the example database
#'data(examples_changepoints)
#'
#'#Using simple example
#'dataset <- examples_changepoints$simple
#'head(dataset)
#'
#'# setting up change point method
#'model <- hcp_red()
#'
#'# fitting the model
#'model <- fit(model, dataset$serie)
#'
#'# execute the detection method
#'detection <- detect(model, dataset$serie)
#'
#'# filtering detected events
#'print(detection[(detection$event),])
#'
#'@export
hcp_red <- function(sw_size = 30, noise = 0.001, trials = 5, red_cp = TRUE, volatility_cp = TRUE, trend_cp = TRUE) {
obj <- harbinger()
obj$sw_size <- sw_size
obj$noise <- noise
obj$trials <- trials
obj$red_cp <- red_cp
obj$volatility_cp <- volatility_cp
obj$trend_cp <- trend_cp
class(obj) <- append("hcp_red", class(obj))
return(obj)
}
## Roughness function
#'@importFrom stats sd
fc <- function(x){
firstD = base::diff(x)
normFirstD = (firstD - base::mean(firstD)) / stats::sd(firstD)
roughness = (base::diff(normFirstD) ** 2) / 4
return(base::mean(roughness))
}
## Function that sums the IMFs given an initial and final IMF.
fc_sumIMF <- function(ceemd.result, start, end){
soma_imf <- base::rep(0, length(ceemd.result[["original.signal"]]))
for (k in start:end){
soma_imf <- soma_imf + ceemd.result[["imf"]][,k]
}
return(soma_imf)
}
## Function that calculates the central point of the sequences.
median_point <- function(cp){
group_outliers <- base::split(cp, base::cumsum(c(1, base::diff(cp) != 1)))
cp <- base::rep(FALSE, length(cp))
# removes the central point from the sequences
for (g in group_outliers) {
if (length(g) > 0) {
j <- stats::median(g)
cp[j] <- TRUE
}
}
i_cp <- base::which(cp, arr.ind = TRUE)
i_cp
}
#'@importFrom stats median
#'@importFrom stats sd
#'@importFrom hht CEEMD
#'@importFrom zoo rollapply
#'@importFrom daltoolbox transform
#'@importFrom daltoolbox fit_curvature_max
#'@export
detect.hcp_red <- function(obj, serie, ...) {
if (is.null(serie))
stop("No data was provided for computation", call. = FALSE)
obj <- obj$har_store_refs(obj, serie)
id <- 1:length(obj$serie)
san_size <- length(obj$serie)
## calculate IMFs
suppressWarnings(ceemd.result <- hht::CEEMD(obj$serie, id, verbose = FALSE, obj$noise, obj$trials))
obj$model_an <- ceemd.result
if (ceemd.result$nimf > 3) {
## create accumulate IMFs vector
cum.vec <- list()
for (n in 1:obj$model_an$nimf){
cum.vec[[n]] <- fc_sumIMF(obj$model_an, 1, n)
}
## calculate roughness for each imf
vec <- vector()
for (n in 1:length(cum.vec)){
vec[n] <- fc(cum.vec[[n]])
}
## Maximum curvature
res <- daltoolbox::transform(daltoolbox::fit_curvature_max(), vec)
div <- res$x
} else {div=1}
## ANOMALY ##
## adding the IMFs with the highest variance
sum_an <- fc_sumIMF(obj$model_an, 1, div) # for AN
# Creates the differential of the sum_an
sum_diff <- c(NA, diff(sum_an)) #NA in the first value to maintain the length of the series
## Calculates the standard deviation of the central point.
sd <- zoo::rollapply(obj$serie, obj$sw_size, sd, by = 1)
sd <- c(rep(NA,14), sd, rep(NA,15)) #filling the borders with NA.
## Creating anomaly vector.
anoms <- sum_diff/sd
## determining outliers according to criterion 2.698 x standard deviation.
outliers <- which(abs(anoms) > 2.698*sd(anoms, na.rm=TRUE))
# removing duplicate anomalies
# captures and stores all sequences
group_an <- split(outliers, cumsum(c(1, diff(outliers) != 1)))
an <- rep(FALSE, length(obj$serie))
## removes the first point from the sequences.
for (g in group_an) {
if (length(g) > 0) {
i <- min(g)
an[i] <- TRUE
}
}
i_an <- which(an, arr.ind = TRUE)
anomalies <- rep(FALSE, length(obj$serie))
if (!is.null(i_an) & length(i_an) > 0) {
anomalies[i_an] <- TRUE
}
## CHANGE POINT ##
serie2 <- serie
serie2[i_an] <- NA
no_na <- which(!is.na(serie2))
serie_cp <- serie2[!is.na(serie2)]
id <- 1:length(serie_cp)
## calculate IMFs
suppressWarnings(ceemd.result <- hht::CEEMD(serie_cp, id, verbose = FALSE, obj$noise, obj$trials))
obj$model_cp <- ceemd.result
## CP do hcp_red
cp_hcp_red <- vector()
if(obj$red_cp){
sum_cp <- vector()
if(div < obj$model_cp$nimf){ # Checks if there is an IMF larger than the division
#adding the IMFs of low variance
sum_cp <- fc_sumIMF(obj$model_cp, div+1, obj$model_cp$nimf)
## retomando as posições da série original
i <- rep(NA, san_size)
i[no_na] <- sum_cp
#change points according to criterion 2.698 x standard deviation
cp_hcp_red <- which(abs(i) > 2.698 * sd(i, na.rm=TRUE))
cp_hcp_red <- median_point(cp_hcp_red)
}
}
## Volatility CP (Change Points)
cp_volatility <- vector()
if(obj$volatility_cp){
sd2 <- zoo::rollapply(serie_cp, obj$sw_size, sd, by = 1)
sd2 <- c(rep(NA,14), sd2, rep(NA,15))
sd3 <- zoo::rollapply(sd2, obj$sw_size, sd, by = 1)
sd3 <- c(rep(NA,14), sd3, rep(NA,15))
i <- rep(NA, san_size)
i[no_na] <- sd3
## resuming the positions of the original series
cp_volatility <- which(abs(i) > 2.698 * sd(i, na.rm=TRUE))
cp_volatility <- median_point(cp_volatility)
}
## Trend CP (Change Points)
cp_trend <- vector()
if(obj$trend_cp && length(obj$model_cp$residue) > 0){
i <- obj$model_cp$residue
gft_model <- fit(hcp_gft(), i)
cp_trend <- detect(gft_model, i)
cp_trend <- which(cp_trend$event)
}
## merging the Change Points
cps <- c(cp_hcp_red, cp_volatility, cp_trend)
change_points <- rep(FALSE, length(obj$serie))
if (!is.null(cps) & length(cps) > 0) {
change_points[cps] <- TRUE
}
detection <- obj$har_restore_refs(obj, anomalies = anomalies, change_points = change_points)
return(detection)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.