
Introduction to the R package hierbase: Enabling Hierarchical

Multiple Testing

Claude Renaux and Peter Bühlmann
Seminar for Statistics, ETH Zürich

November 8, 2021

1 Cite hierbase

If you use the hierbase package, please cite the papers Meinshausen, N. (2008). Hierarchical
testing of variable importance. Biometrika, 95(2), 265-278 and Renaux, C., Buzdugan, L., Kalisch,
M., and Bühlmann, P. (2020). Hierarchical inference for genome-wide association studies: a view
on methodology with software. Computational Statistics, 35(1), 1-40.

2 Introduction

A major goal in high-dimensional statistics is to assign statistical significance of single covariates
for a response of interest. Especially the inference part in terms of statistical significance testing
(or confidence intervals) is, however, often overly ambitious and requires stringent assumptions on
the well-posedness of the design matrix of the covariates in high dimensions. Instead, we advocate
to use hierarchical inference, as proposed earlier with the same motivation by Meinshausen (2008)
and further extended to simultaneously analyse multiple data sets by Renaux et al. (2020). It is a
data-driven multiple testing approach to find significant groups or possibly singletons of covariates.
The advantage is that groups of covariates are typically much easier to identify and if the signal is
sufficiently strong relative to the correlation structure, our method is still able to detect significant
single covariates. The procedure goes top-down through a hierarchical tree from larger to smaller
groups and tries to find an as fine resolution of significant groups as possible.

Since many tests are done in a sequential structure given by the hierarchical tree, a multiple test-
ing adjustment has to be applied. Meinshausen (2008) first proposed a hierarchical multiple testing
adjustment, which we call depth-wise Bonferroni: it (essentially) performs Bonferroni adjustment
with respect to multiplicity of the number of tests at each depth of the hierarchical tree.

3 Hierarchical Cluster Tree

The tree has to partition the covariates in non-overlapping groups for each height of the tree.
The partitions are coarser in the top part and get finer toward the bottom of the tree. The top
node in the tree is always the entire group of all covariates and corresponds to the global null-
hypothesis. Our R package includes two functions for building a hierarchical tree. cluster_vars

or cluster_positions.

1

A hierarchical tree can be built using hierarchical clustering of the p covariates using 1 −
(Person’s correlation)2 as a dissimilarity measure and average linkage. This is performed by default
using the function cluster_vars but many other options are offered.

If there exists a meaningful ordering of the covariates such that closer covariates are more
similar, then the function cluster_positions could be used. It builds a hierarchical tree using
recursive binary partitioning of consecutive covariates.

The user is free in define a different hierarchical tree as long as it can be stored as a dendrogram
in R. See the structure of the output of either cluster_var or cluster_position in order to use
the same structure when calling the hierarchical procedure.

4 Toy example for the function advance_hierarchy

Our R package hierbase implements depth-wise Bonferroni. We demonstrate the function advance_hierarchy

in a toy example. The following arguments of the function are specified: x the data matrix, y the re-
sponse, dendr a dendrogram of the hierarchical tree (e.g. the output of the function cluster_vars),
and test a character string representing which of the ready-to-use test functions should be used.

load the packages

library(hierbase)

library(MASS) # for generating x

random number generator (for parallel computing)

RNGkind("L'Ecuyer-CMRG")

generate a toy data set

n <- 100

p <- 50 # 200

set.seed(3) # set a seed

x <- mvrnorm(n, mu = rep(0, p), Sigma = diag(p)) # data matrix x

colnames(x) <- paste0("Var", 1:p) # column names

beta <- rep(0, p) # coefficients

beta[c(5, 20, 46)] <- 1 # three active covariates

y <- x %*% beta + rnorm(n) # response

estimate hierarchical tree

dendr1 <- cluster_vars(x = x)

run hierarchical procedure

set.seed(4)

res <- advance_hierarchy(x, y, dendr = dendr1, test = "QF")

[1] "step is 4"

[1] "step is 4"

[1] "step is 4"

[1] "step is 4"

2

[1] "step is 3"

[1] "step is 4"

[1] "step is 3"

[1] "step is 4"

[1] "step is 3"

[1] "step is 4"

[1] "step is 3"

[1] "step is 4"

[1] "step is 4"

[1] "step is 3"

[1] "step is 4"

[1] "step is 4"

res

block p.value significant.cluster

1 NA 5.248e-05 Var46

2 NA 0.0001057 Var20

3 NA 0.0001417 Var5

If no second level of the hierarchical tree is specified by the user (see argument block of the
function cluster_vars), then NAs are displayed in the column block of the above output. See
Section 6 for an example how one can define the second level of the hierarchical tree and run the
code in parallel.

Note that the printed lines starting with “step is ...” are printed by the test function QF used in
this example from the R package SIHR. The methodology and theory for the test function QF can
be found in Guo et al. (2020).

5 Toy example for the function run_hierarchy

Alternatively, one can use the function run_hierarchy instead of advance_hierarchy. The clus-
tering step remains the same. The function run_hierarchy is very generic and can be called with
the user’s favorite test function. The test function is passed on as an argument of the function
run_hierarchy.

estimate hierarchical tree

dendr1 <- cluster_vars(x = x)

define test function

low-dimensional partial F-Test

test.func.F <- function(x, y, clvar, colnames.cluster,

arg.all, arg.all.fix, mod.large,

mod.small) {
larger model

data.large <- cbind(clvar, x)

3

estimate larger model

mod.large <- lm(y ~ data.large)

smaller model

setdiff.cluster <- setdiff(colnames(x), colnames.cluster)

data.small <- cbind(clvar, x[, setdiff.cluster])

special case if data.small is empty

if (ncol(data.small) == 0) {data.small <- rep(1, length(y))}

calculate smaller model

mod.small <- lm(y ~ data.small)

compare the models

partial F test

pval <- anova(mod.small, mod.large, test = "F")$P[2]

return(list("pval" = pval, "mod.small" = NULL))

}

run hierarchical procedure

set.seed(4)

res2 <- run_hierarchy(x, y, dendr = dendr1, test.func = test.func.F)

res2

6 Parallel

All the functions can easily be run in parallel if the second level of the hierarchical tree is specified
by the user. Typically, one would specify a partition consisting of, say, five groups which represent
the second level of the tree. This is specified as an argument in the function call of cluster_vars
or cluster_positions if desired. The name of those groups would appear in the column block of
the output of the hierarchical procedure.

With block

The user defines the second level of the hierarchical tree.

block <- data.frame("var.name" = paste0("Var", 1:p),

"block" = rep(c(1, 2), each = p/2))

Estimate the hierarchical cluster tree in parallel.

The argument block defines the second level of the tree.

dendr2 <- cluster_vars(x = x, block = block,

the following arguments have to be specified

for parallel computation

parallel = "multicore",

ncpus = 2)

4

Run the hierarchical procedure in parallel.

set.seed(76)

res2 <- advance_hierarchy(x = x, y = y, dendr = dendr2,

test = "QF",

the following arguments have to be specified

for parallel computation

parallel = "multicore",

ncpus = 2)

See the help files of the functions run_hierarchy or advance_hierarchy for more details about
how one can run the code in parallel.

Note that it is possible to analyze multiple data sets simultaneously by specifying the different
responses and data matrices each as elements of two lists; see the help files for more details. This
makes sense if data sets from, say, multiple studies with the same response and similar or same
data matrices are analyzed.

References

Guo, Z., Renaux, C., Bühlmann, P., and Cai, T. T. (2020). Group inference in high dimensions
with applications to hierarchical testing. arXiv preprint arXiv:1909.01503.

Meinshausen, N. (2008). Hierarchical testing of variable importance. Biometrika, 95:265–278.

Renaux, C., Buzdugan, L., Kalisch, M., and Bühlmann, P. (2020). Hierarchical inference for
genome-wide association studies: a view on methodology with software. Computational Statistics,
35(1):1–40.

5

	Cite hierbase
	Introduction
	Hierarchical Cluster Tree
	Toy example for the function advance`hierarchy
	Toy example for the function run`hierarchy
	Parallel

