Nothing
projsel()
if the number of observations in the dataset is
smaller than both the number of available predictors and the maximum
number of iterations in the selection procedure.rstan
2.21.RcppParallel
to Imports and LinkingTo, as future versions of
rstan
require to link to the Intel TBB library.sub.idx
option to posterior_performance()
to select the
observations to be used in the computation of the performance measures.start.from
option to run projsel()
to start the selection
procedure from a submodel different from the set of unpenalized covariates.posterior_linpred()
and projsel()
:
this also benefits all other functions that use posterior_linpred()
, such
as log_lik()
, posterior_predict()
, posterior_performance()
and others.posterior_performance()
for Windows.posterior_performance()
for gaussian models.projsel()
on models with no penalized predictors.normal_id_glm()
and
bernoulli_logit_glm()
.iter
and warmup
options in kfold()
.rstantools
2.0.0.slab.scale
parameter of hsstan()
, as it was not
squared in the computation of the slab component of the regularized horseshoe
prior. The default value of 2 in the current version corresponds to using the
value 4 in versions 0.6 and earlier.kfold()
and posterior_summary()
functions.parallel::parLapply()
.sample.stan()
and sample.stan.cv()
.get.cv.performance()
with posterior_performance()
.projsel()
.plot.projsel()
for choosing the number of points to plot and
whether to show a point for the null model.mc.cores
option when loading the package.projsel()
only if selection stopped early.max.num.pred
argument of projsel()
to max.iters
.rstan::sampling()
.hsstan()
.hsstan()
.foreach()
/%dopar%
with parallel::mclapply()
.posterior_interval()
, posterior_linpred()
, posterior_predict()
log_lik()
, bayes_R2()
, loo_R2()
and waic()
functions.nsamples()
and sampler.stats()
functions.crossprod()
/tcrossprod()
instead of matrix multiplications.fit.submodel()
.log_lik()
instead of computing and storing the log-likelihood in Stan.pars
in summary.hsstan()
.sample.stan()
and sample.stan.cv()
into hsstan()
.loo()
method for hsstan objects.adapt.delta
argument for base models from 0.99 to 0.95.scale.u
from 20 to 2.scale()
to standardize the data in sample.stan.cv()
.plot.projsel()
.get.cv.performance()
work also on a non-cross-validated hsstan object.print()
and summary()
functions for hsstan objects.plot.projsel()
.adapt_delta
parameter and change the default for all
models from 0.95 to 0.99.doParallel
since doMC
is not packaged for Windows.plot.projsel()
.Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.