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Abstract

Medical research often describes the existing diseases (comorbidities) in its study pop-
ulations, and retrospective research may rely on this information for risk adjustment. Sets
of International Classification of Diseases (ICD) codes are often used for high-level classifi-
cation of patients into comorbidities (e.g., ‘Cancer’ or ‘Heart Disease’) to help summarize
characteristics of a population. Similar tools were not available in R, and do not scale
to big data sets. The icd extension for R includes validated mappings of ICD codes to
comorbidities, and uses an efficient, fast and scalable algorithm to apply these mappings
to patient data. This enables reproducible workflows with hundreds of millions of patient
records as are increasingly seen in large national and international databases.
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1. Introduction

ICD diagnostic codes are used to define tens of thousands of diseases. Originally from the
World Health Organization (WHO), their purpose was to allow epidemiologists to study
global health (WHO 2018). In the USA, and elsewhere, the WHO ICD codes have been
extended for administrative purposes by the government Centers for Medicare and Medicaid
Services (CMS), notably for billing (CMS 2018). All over the world, ICD codes are the
primary method by which diseases are recorded, often using national variants. This makes
ICD codes important in many kinds of medical research, e.g., for defining national health
metrics (Lee et al. 2003), and in many of clinical studies, especially those in which groups
of patients are compared (e.g., Frank et al. 2014). icd was made to meet the need for ICD
code interpretation in R, and, in particular, it is designed to compute comorbidities quickly,
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Figure 1: Frequency distribution of ICD codes in 5,000 pediatric hospital inpatients showing
nearly 4,000 unique ICD codes; 1,401 appear only once, making them and the many other
low-frequency codes of low or negative value in inter-group comparisons.

enabling a reproducible workflow when used with big or small data.

1.1. What is a comorbidity?

Given there are tens of thousands of diagnostic codes, it is extremely difficult to use them
directly in most statistical models: there are a few relatively common ICD codes, but there
is a long tail to the frequency distribution (see Figure 1 for an example) since even common
diagnoses can be finely sub-divided. The almost universal solution is to group these codes in
a standardized way (e.g., Quan et al. 2005; Elixhauser et al. 1998), and to use the presence
and absence of any disease code in the comorbidity groups as covariates in models. The term
comorbidity describes a disease which is present alongside a primary medical problem.

For example, a diabetic patient presents to hospital with a stroke: diabetes is the comorbidity
and stroke is the presenting complaint. During or after an hospital admission, medical coders
review the records and assign specific ICD (and other) codes. In this example, the patient
might get the ICD-10 code E11.2 meaning ‘Type 2 diabetes mellitus with renal complications,’
and I63.0 meaning ‘Cerebral infarction due to thrombosis of precerebral arteries.’ In this
case, the comorbidities might be regarded as: ‘Diabetes’ and ‘Renal’. The term comorbidity
generally refers to classes of diseases, not specific diagnoses, and that is how the term is used
in the rest of this paper.

Term Description

comorbidity broad category of disease, e.g., Cancer

comorbidity map set of comorbidities, each defined by diagnostic codes
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patient-visit record identifier, unique for each encounter with a patient,
but could represent a patient at one moment, or a summa-
tion of all conditions a patient has ever had

Table 1: Terminology
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1.2. Uses of comorbidities

Comparing groups

Almost every report of a medical investigation includes a table showing the characteristics of
the groups comprising a study population. (For example, see table 2 in Frank et al. (2014).)
One purpose of this table is to show any differences between the groups under investigation.
Things like age and weight can be compared numerically, whereas the tens of thousands of
distinct diagnostic codes may only be compared by grouping into comorbidities. It is of
central importance to retrospective studies that confounding is minimized by understanding
differences in comorbidities between groups, then by risk adjustment. In randomized studies,
this is achieved by recruiting enough patients and randomly assigning them to treatment:
comorbidities of interest are still needed to demonstrate that recruitment was free from bias
and that the sample size large enough. It is helpful if different studies use the same criteria,
and ideally the same methods, for establishing these comorbidities. One main purpose of
icd is to enable standardized calculations in R using extremely well validated definitions of
comorbidities, e.g., Quan et al. (2011) and Agency for Healthcare Research and Quality (2018)
only offer SAS code for this task.

Risk adjustment

Identifying differences between groups in retrospective medical data is not hard: they almost
always exist. The eternal challenge of retrospective research is to account for those differences
to make causal inferences. A common, somewhat historic strategy is to use scoring systems to
encapsulate the severity of the comorbidities in one number, for example the Charlson Score
(Charlson, Pompei, Ales, and MacKenzie 1987). Another approach is to use propensity scores
or propensity matching: the inputs to propensity models include comorbidity information,
which is a simple score like the Charlson Score, or a binary representation of the presence
or absence of comorbidities for each patient or patient-visit (See Terminology). More sophis-
ticated matching also relies on comorbidities for better risk adjustment, (e.g., Diamond and
Sekhon 2012).

1.3. Mapping ICD codes onto comorbidities

The ubiquity of ICD codes means there is a long history of grouping them to form comor-
bidities, and these standardized groups have been used for decades as the basis for medical
studies. As revisions of the ICD codes have appeared, and various diseases have waxed and
waned in significance, people have worked to categorize them into these standardized comor-
bidity groups. The two main groups were developed by Charlson (Charlson et al. 1987), and
Elixhauser (Elixhauser et al. 1998). Such mappings between comorbidity categories and sets
of diagnostic codes will henceforth be called, comorbidity maps. The benefits of using existing
comorbidity maps are:

❼ consistency and comparability with existing research
❼ they are well validated
❼ researchers can avoid the effort and errors involved in developing new comorbidity
schemes.
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Charlson did not initially use ICD codes to define the comorbidities, but various authors (e.g.,
Quan et al. 2005) have since classified ICD codes into those 17 comorbidity categories. Elix-
hauser (1998) developed ICD-based comorbidities for 31 diseases, and the US-based Agency
for Healthcare Research and Quality (AHRQ) used this as a foundation for its own comor-
bidity groups (Agency for Healthcare Research and Quality 2018). Elixhauser and Charlson
comorbidities have undergone refinement over the years, especially by Quan et al. (2011)
whose meticulous work on ICD-9 and ICD-10 codes has been included in icd, alongside the
AHRQ mappings.

1.4. Medical codes

Medical coding has a complicated history beginning with epidemiology, and snowballing to
include medical billing and research. There are several major coding schemes, including the
WHO ICD family, various national modifications and extensions of the WHO ICD codes, the
extensive USA ICD-CM (Clinical Modification), and several unrelated schemes with similar
goals. There are codes for diagnoses, procedures, medical equipment, and causes and cir-
cumstances of disease or injury. Codes sometimes have detail beyond what seems useful for
routine clinical care, for example:

R> library("icd")

R> explain_code("V97.33XD")

[1] "Sucked into jet engine, subsequent encounter"

Because the WHO ICD is a subset of ICD Clinical Modification, icd is driven by ICD-9-
CM and ICD-10-CM, both of which are available in the public domain, allowing analysis of
WHO codes and more detailed USA or other national sets of codes. Unfortunately, the WHO
exercises copyright over the international ICD-10 scheme, so it cannot be included. This does
not affect comorbidity computations.

ICD-9 codes are primarily numeric, have fewer codes defined, and have a more variable format,
sometimes with a prefix of V or E. ICD-10 codes have top-level code in the form of a letter,
then two numbers, with a longer section of mixed numbers and letters after the decimal
divider. Both ICD-9 and ICD-10 codes can be presented with or without a decimal divider,
thus there is potential ambiguity between ICD-9 and ICD-10 (e.g., V10 is in both schemes),
and between ICD-9 codes without separators (e.g., 0100 and 100).

R> explain_code(as.icd9("V10"))

[1] "Personal history of malignant neoplasm"

R> explain_code(as.icd10("V10"))

[1] "Pedal cycle rider injured in collision with pedestrian or animal"

R> explain_code("0100")

[1] "Primary tuberculous infection"
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R> explain_code("100")

[1] "Leptospirosis"

Breakdown of an ICD-10 code

This is a breakdown of an ICD-10-CM code, chosen to illustrate the hierarchical nature of
the codes, and difference between WHO ICD-10 and ICD-10-CM. The following two codes
are shared by the WHO definitions and ICD-10-CM.1

R> explain_code(c("S62", "S62.6"))

[1] "Fracture at wrist and hand level" "Fracture of other and unspecified finge

These three are refinements offered only by ICD-10-CM:

R> explain_code(c("S62.60", "S62.607", "S62.607S"))

[1] "Fracture of unspecified phalanx of finger"

[2] "Fracture of unspecified phalanx of left little finger"

[3] "Fracture of unspecified phalanx of left little finger, sequela"

These codes are all contained in the sub-chapter, Injuries To The Wrist, Hand And Fin-

gers, (S60 to S69) and the chapter Injury, poisoning and certain other consequences

of external causes. (S00 to T88).

Quirks of ICD codes

There are multiple possible notations of the same ICD codes, and ICD-9-CM codes are par-
ticularly variable:

❼ presence or absence of a decimal point divider
❼ use of X as a filler
❼ zero-padding for three-digit codes < 100

In real data, ICD codes may not be constrained to a definitive list, so may contain frankly
invalid codes, or codes which are valid in one edition of ICD, but not another, yet do fall
clearly into one comorbidity.

1.5. Motivation and goals

The original motivation for icd was lack of any R software in the Comprehensive R Archive
Network (CRAN) repository, or elsewhere, to compute comorbidities from ICD codes, nor any
data that was easily parsable by R for interpreting ICD codes or representing the Charlson
or Elixhauser schemes or the official lists of codes themselves.

The requirements at the outset were:

1Here the icd function explain_code is used. More detail on this can be found in Section 5.2.
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❼ enable a quickly reproducible workflow which includes a comorbidity computation
❼ accurate computation of Charlson and Elixhauser families of comorbidities
❼ faithful representation of comorbidity maps as intended by the original authors, with a
reproducible audit trail back to the original SAS (SAS Institute, Cary NC, USA) code
or published data

❼ performant enough for big data (Simpao, Ahumada, and Rehman 2015): updating the
input patient data or comorbidity map should be possible without waiting minutes or
hours to recompute the comorbidities

❼ extensible to allow addition of other comorbidity maps and scoring systems

Handling big data well aligns with another goal of enabling analysis of moderately big health
care datasets with modest computing power. WHO ICD codes are used internationally, and
it is important to enable their use without expensive computing resources, or reliance on the
Internet for cloud computing. An open source licence (GNU General Public License v3.0
Free Software Foundation 2007) was chosen for this reason. This goal also helps an analyst
or researcher to use a laptop to deal with all but the very biggest datasets, avoiding the
complexity of using cloud computing and the risks of moving protected health information
across the internet.

During development it became clear that the following were also important:

❼ handling of invalid data to minimize effect on comorbidities
❼ finding out the meaning of ICD codes
❼ navigating the ICD code hierarchies

Main computational problems

1. String matching

The central computational problem is one of using string matching to map ICD codes from
patient data to the comorbidities, and recording the results. String matching is a slow op-
eration, and memory intensive; the innovation described here is the use of matrix algebra to
solve the problem. This requires a brief pre-processing step with string matching, whereas
other solutions use string matching throughout.

2. Inexact comorbidity definitions

The comorbidity definitions in published literature do not precisely specify each individual
code. This is partly a function of the various annual and international revisions of ICD codes,
and also the need for brevity in publications, so ranges of codes are specified. For example,
in the Valvular Heart Disease comorbidity in the ICD-9 Elixhauser scheme, we see it contains
the range 394.0 – 397.1 . In the ICD-10 version of the Elixhauser map, there are many top-
level codes, such as I34, I35 and I36, which themselves are never or rarely used for diagnostic
coding. Therefore, there are few or no exact matches between candidate ICD codes and the
codes or ranges in the comorbidities, so some kind of string matching must be done, or a
determination of whether a code falls in a specified range. This is dealt with in detail in
Section 5.1.
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3. Big data

Bulk health care data, even for one hospital, often has hundreds of thousands or millions
of encounters of different types. National databases and multi-hospital patient registries
often have many more. Initial work using pure R code, with some optimization, resulted
in computations taking minutes for about ten thousand patients. Although the problem is
parallelizable, performance analysis on early versions using string matching showed that there
was a lot of pressure on the CPU caches, so massive parallelization – when even an option –
would have had diminishing returns with scaling. This is demonstrated by the benchmarks
in the Results.

The problem of determining which patients have which disease classes can be expressed in
pseudocode as nested loops:

for each patient-visit, get the ICD codes

for each ICD code

for each comorbidity

search the lists of codes for that comorbidity

if a matching diagnostic code is found, then

record that comorbidity for the current patient-visit

This is an O(n) computation because the search element is limited to the fixed comorbidity
map, thus making it asymptotically unimportant.

The benchmarks in the Results section show icd is much more efficient than string matching
approaches.

Big data solutions cannot often be solved simply by increasing hardware capacity. The avail-
ability of many computing cores in the cloud does not help an algorithm which is limited
to a single thread, or an algorithm which is ignorant of how CPU memory caching works.
icd was designed to work efficiently on big health care data using parallel processing, and by
minimizing the memory requirements of the problem.

2. Main features

2.1. User-facing

❼ Comorbidity computations

– compute comorbidities based on ICD-9 or ICD-10 codes
– offer a framework for comorbidity computations based on other medical codes

❼ ICD code processing and comprehension

– validate ICD codes
– convert between different ICD code representations
– explain ICD codes with human-readable descriptions
– convert between wide and long format patient data2

2icd does not yet convert (also known as ‘cross-walk’) between ICD-9-CM and ICD-10-CM.
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– compare national and annual revisions
– navigate the ICD hierarchies

❼ Scoring systems based on comorbidities

– Charlson scores
– Van Walraven scores
– AHRQ Clinical Classification Software (CCS) scores
– Centers for Medicare & Medicaid Services (CMS) Hierarchical Condition Code
(HCC) scores

2.2. Internal

❼ ICD and comorbidity map data is extracted directly from published sources (journal
articles and, where available, SAS code) in a reproducible and verifiable manner

❼ C and C++ code and accelerated matrix algebra to give accurate results quickly with
big data

❼ extensive test suite

2.3. Included comorbidity maps

This package contains mappings to convert ICD codes to comorbidities using methods from
several sources, based on the AHRQ, Charlson or Elixhauser systems. Updated versions of
these lists from Agency for Healthcare Research and Quality (2018) and Quan et al. (2011)
are included, along with the original Elixhauser et al. (1998) mapping. Since some data
is provided in SAS source code format, this package has internal functions to parse this
SAS source code and generate R data structures. Some lists are transcribed directly from
the published articles, but interpretation of SAS code used for the original publications is
preferable.

For example, here are the names of the comorbidities in the Charlson map:

R> names(icd10_map_charlson)

[1] "MI" "CHF" "PVD" "Stroke" "Dementia" "Pulmonary" "

[8] "PUD" "LiverMild" "DM" "DMcx" "Paralysis" "Renal" "

[15] "LiverSevere" "Mets" "HIV"

and the ICD-10 codes from the first two comorbidities:

R> icd10_map_charlson[1:2]

$MI

[1] "I21" "I210" "I2101" "I2102" "I2109" "I211" "I2111" "I2119" "I212" "I2121" "I212

[13] "I214" "I219" "I21A" "I21A1" "I21A9" "I22" "I220" "I221" "I222" "I228" "I229
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$CHF

[1] "I099" "I110" "I130" "I132" "I255" "I420" "I425" "I426" "I427" "I42

[12] "I43" "I50" "I501" "I502" "I5020" "I5021" "I5022" "I5023" "I503" "I50

[23] "I5032" "I5033" "I504" "I5040" "I5041" "I5042" "I5043" "I508" "I5081" "I50

[34] "I50812" "I50813" "I50814" "I5082" "I5083" "I5084" "I5089" "I509" "P290"

Note that these codes are of icd10 and character class, and that they carry the attribute
icd_short_diag which is set to TRUE, since there is no decimal divider.

3. Methods

The main internal feature of this software is the algorithm for assigning the diagnostic codes
of a patient into comorbidities. The core of this implementation is a matrix multiplication,
but this is only possible with some pre-processing.

3.1. Algorithm for comorbidity computation

1. ICD-9 and ICD-10 data preparation differs

❼ ICD-9: all possible ICD-9 codes are pre-calculated in ICD-9 maps.
❼ ICD-10: Partial matching to create map with relevant codes.3: O(n)

2. Reduce the problem to a matrix multiplication

a. Compute the intersection of ICD codes from the patient data and the comorbidity
map of interest: O(log n) for time with a tree-based data structure. For ICD-10,
this is done at the same time as Item 1, for no additional time complexity.

b. Encode the ICD codes as consecutive integers: O(n) but could be optimized to
O(1) by using the knowledge that there are now no duplicates.

c. Generate a sparse patient-visit matrix, with one row per patient, and a column for
each ICD code defined by the consecutive integers from the previous step: O(n)

d. Generate a dense comorbidity matrix, with one column for each comorbidity, and
one row for each ICD code: O(1) in relation to n patient-visits.

3. Perform matrix multiplication: O(Rm · n) time complexity where Rm is the ratio of
non-zero to zero elements per row. For typical patient data, the mean is around five to
ten codes per patient-visit, with many administrative data being limited to thirty. This
low number compares favorably to the matrix width of tens of thousands.4

3This partial matching is not based on regular expressions, but simply identifying whether the more signif-
icant characters of a longer code match a known parent. e.g., using the previous example, if S62.6 appeared
in a comorbidity map, then S62.607S would be matched.

4Sparse matrix multiplication with dense matrices is already O(n) using the widespread Compressed Row
– or Column – Storage (CRS or CCS) scheme. Even if dense matrix multiplication were used, it would still be
O(n), despite being O(n3) in the general case: in this problem, only one dimension of one matrix grows with
increasing patient-visits. These are asymptotic limits for time, not for memory or bandwidth.
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3.2. Data preparation

ICD-9

Step 1 of the algorithm is only applicable to ICD-9 codes. The comorbidity maps for ICD-
9 codes already contain all the syntactically valid permutations of child codes according to
the ICD-9 specification. This means exact matching can be done in subsequent steps. The
pre-calculation of the ICD-9 maps is done at package creation time, using internal functions
which are included for reproducibility.

ICD-10

ICD-10 codes are more complex and have many more possible permutations: the same ICD-9
technique could be used, but the ICD-10 maps would be huge, and vulnerable to unexpected
modifications; for example, a national ICD-10 variant using a different letter suffix which
would not be captured. The solution is to have ICD-10 comorbidity maps which only include
the level of details specified by the original author, often just the top-level three-digit codes,
and use partial string matching,5 combining steps 1 and 2a during one scan of the data.

3.3. Problem reduction

There are some major simplifications:

1. Only a fraction of possible ICD codes typically appear in health data, in step 2a
2. ICD codes are codified as integers in step 2b
3. Sparse matrix representation can be used to dramatically reduce the memory require-

ment of the patient-visit matrix, in step 2c

Reduce number of codes

Reducing the total number of codes in both patient-visit and comorbidity data is performed in
step 2a of the algorithm. For matrix multiplication, the columns n of the patient-visit matrix
must match the rows q of the comorbidity map both in number. This means a common
vocabulary for the codes in the patient-visits and the comorbidity maps must be established.
This is accomplished in step 2b by using a factor,6 where the levels represent the intersection
of codes from the patient-visit data and the whole comorbidity map. Thus the integer factor
indices become row or column indices in matrices A and B respectively. i.e., we only need
to represent codes which are in both the patient-visit dad and the comorbidity map, making
matrix A narrower and matrix B shorter. String searching strategies miss this optimization.

Referring back to the pseudocode in Section 1.5.1, integer representation would allow much
faster binary or linear search, but this is obviated by a matrix multiplication. Although the
matrix multiplication probably performs more computations than needed, it has simpler flow
control and is a problem for which highly-optimized solutions exist.

5This partial matching is not based on regular expressions, but simply identifying whether the more signif-
icant characters of a longer code match a known parent. e.g., using the previous example, if S62.6 appeared
in a comorbidity map, then S62.607S would be matched.

6
R uses a data structure called a factor in which each element is stored as an integer index into an array

of strings. The strings are unique, whereas the integers may be repeated.
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1. Prepare

❼ ICD-9: All permutations already in maps

❼ ICD-10: String match to reduce map to relevant codes

2. Reduce the problem

a. Intersection of patient and map codes

b. Encode as integer indices

c. Generate sparse patient-visit matrix

d. Generate dense comorbidity matrix

3. Perform matrix multiplication

Figure 2: Recap of algorithm

Sparse matrix representation

In a large data set, less common codes are more likely to appear, resulting in more nearly
empty columns in the patient-visit matrix. Since this representation is used primarily to
facilitate calculation of huge datasets, we ignore the fact that sparse format may be less
efficient than dense for small datasets. Row-major representation also makes sense, with each
row corresponding to a patient-visit. This is done in step 2c of the algorithm.

The comorbidity matrix is more sparse than the patient-visit matrix, but is implemented
as a dense data structure in step 2d of the algorithm for two reasons: firstly, linear algebra
software is often optimized for row-major sparse multiplications with dense matrices; secondly,
this matrix has a maximum size limited by the comorbidity definitions, so does not need to
scale with very large numbers of patients. For example, ignoring the problem reduction step
described above, the maximum size of the ICD-9 AHRQ comorbidity matrix is: 14678× 30×
4 = 1.8×106, i.e., less than two megabytes,7 which compares favorably to the eight megabyte
CPU cache in the modest workstation used in the benchmarks presented in Section 4.

There is a detailed example below in Section 3.4, but a better idea of the bulk structure of
this matrix can be seen below for a fictitious comorbidity map with five categories, and also
in Figure 3. Note that the code represented by the last row appears in the first and third

7Again the calculation is done using a 32-bit word for each flag.
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Figure 3: These are visualizations of some complete maps, black representing the appearance
of a particular ICD code in a comorbidity column

comorbidities, whereas the others are all unique to one comorbidity.

Bp,q =

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
1 0 1 0 0
...

...
...

...
...

Matrix multiplication

This section first describes steps 2c and 2d of the algorithm in Section 3.1. Let A represent
the matrix of comorbidities associated with each patient-visit, where each row, m, is a patient-
visit, and each column, n, represents a different code. Each cell of the matrix is therefore
either unity or zero. Unity indicating that the patient-visit on row m is associated with the
code on column n; or zero, if not.

Am,n =











a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n
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Let matrix B be the comorbidity map, where each row, p, represents a different code, and
each column, q, represents a comorbidity.

Bp,q =











b1,1 b1,2 · · · b1,q
b2,1 b2,2 · · · b2,q
...

...
. . .

...
bp,1 bp,2 · · · bp,q











Given there are tens or hundreds of thousands of possible ICD-9 or ICD-10 codes, the possible
width of A is large (n columns). There are also many ICD codes for each comorbidity, so the
height ofB is large (p rows), although typical comorbidity maps only cover a subset of possible
codes. Many data sets have tens of millions of patient-visits, each with typically up to 30
diagnostic codes, the mean being around five to ten, depending on the dataset, so the memory
requirement using lower estimates, using four bytes per flag,8 is 107 × 104 × 4 = 4 × 1011,
which is 400 gigabytes simply to represent the patient-visit to disease relationships.

Since the integer levels of the factor of ICD codes is common between the patient-visit
and comorbidity matrices, n = p and the comorbidities for each patient-visit is their matrix
product.

Cm,q = AB =











c1,1 c1,2 · · · c1,q
c2,1 c2,2 · · · c2,q
...

...
. . .

...
cm,1 cm,2 · · · cm,q











3.4. Worked example using ICD-10 codes

Take four patient-visits with the following ICD-10 codes in wide format, seen in Table 2, and
this simple comorbidity map:

R> list(

R> "Rheumatic Heart Disease" = "I098",

R> "Hypertension" = c("I10", "I11"),

R> "Heart failure" = c("I50", "I110")

R> )

Patient-Visit Code 1 Code 2 Code 3

Encounter one K401

Encounter two I0981 C450

8A C++ int is used for each comorbidity flag, which is typically, in 2018, a four-byte word. However,
the matrices used by icd hold only true or false values, represented as 1 or 0. It appears inefficient to use an
entire int. An alternative is bit-packing of 32 bool bits into each int, which has a stormy history in the C++

Standard Template Library (Järvi, Gregor, Willcock, Lumsdaine, and Siek 2006), and, more importantly, is
not supported by any major linear algebra library.
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Encounter three M352 I10

Encounter four I110 H40001 I10

Table 2: Four patient-visits with some ICD-10 codes in ‘wide’
format for worked example

There are several things to note, which represent common features in real health care data:

❼ There are patient-visit codes which do not appear in the comorbidity map.
❼ There are codes in the comorbidity map which do not appear in the patient-visit codes.
❼ I11 appears in one comorbidity and its child code I110 appears in another.
❼ Patient two has code I0981, but only the parent code I098 appears in the comorbidity
map.

Let A be a simplified set of patient-visits, where the columns represent the ICD-10 codes
I0981 (rheumatic heart failure), I10 (essential hypertension), and I110 (hypertensive heart
disease with heart failure). Again, each row is a different patient-visit.

Let B be a simplified comorbidity map, where the columns represent congestive heart failure
and hypertension, in that order. Note that 110 is found in both these comorbidities.

A =









0 0 0
1 0 0
0 1 0
0 1 1









B =





1 0 0
0 1 0
0 1 1



 C = AB =









0 0 0
1 0 0
0 1 0
0 2 1









Note that cell C4,2 = 2, because the condition I110 is in two comorbidities, so the final result
can be given as a logical matrix C 6= 0 Thus, the final result is:

(C 6= 0) =









0 0 0
1 0 0
0 1 0
0 1 1









Table 3 shows how this can be represented to the user.

Patient-Visit Rheum HTN CHF

Encounter one

Encounter two yes

Encounter three yes

Encounter four yes yes

Table 3: Output of the worked example using ICD-10 codes.
‘Rheum’ is Rheumatic Disease, ‘HTN’ is hypertension, ‘CHF’
is Congestive Heart Failure.



16 icd: Efficient calculation of comorbidities from ICD codes

3.5. Worked example with anonymous patient data

The US State of Vermont offers anonymized public hospital discharge data (Vermont Depart-
ment of Health 2016). A sample is included in icd and is used here to illustrate a real-world
comorbidity calculation.9

R> head(vermont_dx[1:10])

visit_id age_group sex death DRG DX1 DX2 DX3 DX4 DX5

1 7 40-44 male TRUE 640 27801 03842 51881 41519 99591

2 10 75 and over female FALSE 470 71526 25000 42830 4280 4019

3 13 75 and over female FALSE 470 71535 59651 78052 27800 V8537

4 16 55-59 female FALSE 470 71535 49390 53081 27800 V140

5 37 70-74 male FALSE 462 71536 4241 2859 2720 4414

6 41 70-74 male FALSE 462 71536 V1259 V1582 V160 V171

The data is in ‘wide’ format. ICD codes have the ‘short’ structure, without the decimal
divider. Diagnoses are spread across the DX columns.

R> v <- vermont_dx[-c(2:5)]

R> v[1:5, 1:5]

visit_id DX1 DX2 DX3 DX4

1 7 27801 03842 51881 41519

2 10 71526 25000 42830 4280

3 13 71535 59651 78052 27800

4 16 71535 49390 53081 27800

5 37 71536 4241 2859 2720

R> v_cmb <- comorbid_charlson(v, return_df = TRUE)

visit_id MI CHF PVD Stroke Dementia Pulmonary Rheumatic PUD LiverMild DM DMc

7 FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALS

10 FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALS

13 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALS

16 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALS

37 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALS

41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALS

Renal Cancer LiverSevere Mets HIV

TRUE TRUE FALSE FALSE FALSE

9A condition of use of this data requires the following text be included: “Hospital discharge data for use in
this study were supplied by the Vermont Association of Hospitals and Health Systems-Network Services Orga-
nization (VAHHS-NSO) and the Vermont Green Mountain Care Board (GMCB). All analyses, interpretations
or conclusions based on these data are solely that of [the requestor]. VAHHS-NSO and GMCB disclaim re-
sponsibility for any such analyses, interpretations or conclusions. In addition, as the data have been edited and
processed by VAHHS-NSO, GMCB assumes no responsibility for errors in the data due to coding or processing
by hospitals, VAHHS-NSO or any other organization, including [the requestor].”
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Figure 4: This visualization of the result of the comorbidity calculation shows a black cell for
each positive comorbidity in one thousand patients from Vermont, USA.

FALSE FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE FALSE

FALSE FALSE FALSE FALSE FALSE

4. Results

There are now three active CRAN packages which calculate comorbidities: icd, medicalrisk

(McCormick and Joseph 2016), and comorbidity (Gasparini 2018). The latter two work using
the strategy described in the pseudocode in Section 1.5.1.

The following is a limited performance comparison using synthetic data. This synthetic data
shares some characteristics of real data: firstly, the more patients there are, the more coverage
there is of the entire code space of the ICD scheme; secondly, there are both valid and invalid
ICD codes; thirdly, each patient is assigned twenty codes. From the author’s experience, the
mean number of codes per patient is around five to ten, so twenty per patient represents
twenty a mild stress-test of the algorithms.

Figure 5 shows time to compute comorbidites for increasing numbers of rows of data, showing
icd is dramatically faster than the alternatives. Lines are fitted from where the relationship
becomes linear at 10,000 rows of data, and these are used to extrapolate to estimates of the
much larger computations seen in Figure 7. Figure 6 shows the relative speed up icd offers in
comparison to the alternatives.
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Figure 5: Performance comparison of comorbidity packages up to 10,000,000 rows, with
500,000 patient-visits and 20 comorbidities per visit. Models are fitted where the log-log
relationship becomes linear, where rows > 1,000. Using an eight core 3.40GHz CPU, 32GB
RAM R 3.5.1 using Linux, kernel 4.15. comorbidity was run with and without parallel option,
and the best strategy was chosen for each number of iterations.
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Figure 6: Relative speed-up using icd compared to the alternatives, using the same numbers
of patient-visits and comorbidities as in Figure 5.
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Figure 7: Predicted duration of computation for one hundred-million patient-visits, with
twenty diagnoses per patient

5. Implementation Details

5.1. Derivation of the comorbidity maps

It is important to have a reproducible audit trail for foundational work, so icd contains code
which parses SAS source code in order to derive the original intent of the author in how the
comorbidity maps were implemented. The AHRQ and Quan et al. provide such SAS source
code, whereas other maps are only available in the form of tabulated data in journal articles.

Parsing original SAS code

For example, Quan et al. offer the following code for pulmonary disease in the ICD-9 Charlson
map. The lines split for clarity.

%LET DC6=%STR(✬4168✬,✬4169✬,

✬490✬,✬491✬,✬492✬,✬493✬,✬494✬,✬495✬,✬496✬,

✬500✬,✬501✬,✬502✬,✬503✬,✬504✬,✬505✬,

✬5064✬,✬5081✬,✬5088✬);

Note that 497 – 499 are undefined in ICD-9. What should be done if 497 appears in a data
set? Here an argument is made that this is completely invalid. Firstly, see the sub-chapter
definitions:

R> sc <- c("Chronic Obstructive Pulmonary Disease And Allied Conditions",

R+ "Pneumoconioses And Other Lung Diseases Due To External Agents")

R> icd9_sub_chapters[sc]



20 icd: Efficient calculation of comorbidities from ICD codes

$❵Chronic Obstructive Pulmonary Disease And Allied Conditions❵

start end

"490" "496"

$❵Pneumoconioses And Other Lung Diseases Due To External Agents❵

start end

"500" "508"

497 is not a valid code itself. It could be a typo for any of the other combinations, of which
four are completely different, yet valid codes:

R> explain_code(c("497", "479", "947", "974", "749", "794"), warn = FALSE)

[1] "Cleft palate and cleft lip"

[2] "Nonspecific abnormal results of function studies"

[3] "Burn of internal organs"

[4] "Poisoning by water, mineral, and uric acid metabolism drugs"

There are also many other ways the coder may have made the error other than a permutation
of the intended code. Given the wide range of disease processes, and no guarantee at all that
the coder made a mistake only in the last digit, icd discards the code to avoid giving a false
positive comorbidity flag.

R> "497" %in% icd9_map_charlson

[1] FALSE

The comorbidity maps are therefore constructed by generously including all children (valid
or invalid) of the explicitly defined three-digit codes, but they do not extrapolate to other
three-digit codes. Suppose additional digits were defined by a country’s extension of ICD-9,
but do not appear in the WHO or ICD-9-CM definitions. icd already includes all possible
structurally valid ICD-9 child codes in the map. This can be seen here, where two fictitious
decimal places are seen in the map, but not three:

R> "49699" %in% icd9_map_quan_deyo[["Pulmonary"]]

[1] TRUE

R> "496999" %in% icd9_map_charlson

[1] FALSE

More generosity is offered when calculating the comorbidities, so even if invalid codes appear,
the intent of this code to fall within the pulmonary comorbidity hierarchy is clear enough:

R> alice <- data.frame(id = "alice", icd9 = "49699")

R> comorbid_charlson(alice, return_df = TRUE)[["Pulmonary"]]
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[1] TRUE

Parsing range definitions

For some mappings, no source code was available, but the comorbidities are described in
journals using ranges. e.g., in the ICD-9 Elixhauser mapping, we find 243 – 244.2 in the
thyroid disease definition. This is a subset of the entire range of thyroid diseases in ICD-9:
244.3, 244.8 and 244.9 also exist. icd takes great care with false positives here by carefully
excluding parent codes which might have been captured by a pattern matching approach. In
this case, 244 should not be considered a match because it includes codes where which were
clearly excluded. A number of ICD code range operators are defined to facilitate this:

R> head("243" %i9da% "244.2")

[1] "243" "243.0" "243.00" "243.01" "243.02" "243.03"

R> "244" %in% ("243" %i9da% "244.2")

[1] FALSE

Note that 244 is too broad to fit the original Elixhauser description, because it implies all its
children, which would go beyond 244.2.

5.2. Other Functionality

Validation

icd allows checking whether codes are valid, and, in the USA, whether they are ‘billable’,
i.e., leaf nodes, or merely intermediate members of the hierarchy. Research and clinical data
may also contain relevant non-billable codes, and this is accounted for by the comorbidity
calculations.

R> is_valid(c("441", "441.0", "441.01", "XXX"))

[1] TRUE TRUE TRUE FALSE

R> is_billable(c("441", "441.0", "441.01", "XXX"))

[1] FALSE FALSE TRUE FALSE

R> head(

R+ data.frame(code = children("441"),

R+ billable = is_billable(children("441"))))
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code billable

1 441 FALSE

2 4410 FALSE

3 44100 TRUE

4 44101 TRUE

5 44102 TRUE

6 44103 TRUE

Hierarchy and explanation

Functions are provided to navigate the ICD-9 and ICD-10 hierarchies. This example first
takes the children of the ICD-9 code 441.0:

R> children("441")

[1] "441" "4410" "44100" "44101" "44102" "44103" "4411" "4412" "4413" "4414" "4415

[13] "4417" "4419"

Several five-digit codes begin with 4410. explain_code condenses all these children to their
common parent, before interpreting the ICD code:

R> explain_code(children("4410"))

[1] "Dissection of aorta"

What does each one mean?

R> explain_code(children("4410"), condense = FALSE)

[1] "Dissection of aorta" "Dissection of aorta, unspecified site"

[3] "Dissection of aorta, thoracic" "Dissection of aorta, abdominal"

[5] "Dissection of aorta, thoracoabdominal"

5.3. Software libraries

This package is built on the strong foundations of R (R Core Team 2018), Rcpp (Eddelbuettel
and Francois 2011), RcppEigen (Eddelbeuttel and Bates 2013), and Eigen (Guennebaud,
Jacob, and et al 2017), the highly optimized C++ linear algebra library. Eigen was chosen
because of its performance oriented approach to matrix multiplication using advanced x86
instructions when possible, and, in the case of the row-major sparse multiplication with a
dense matrix, a multi-threaded solution. Once this was done, the bottlenecks moved to the
data preparation before the matrix multiplication, which itself was optimized by simple R
techniques such as vectorization.

5.4. Extensions
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R’s S3 class system is used for extensibility, so it is straightforward to include additional ICD
schemes, e.g., for different national systems. Likewise, it is also easy to add new comorbidity
maps, or use user-defined ones. Several authors have contributed code which extends icd to
solve other problems:

❼ Van Walraven risk scores (van Walraven, Austin, Jennings, Quan, and Forster 2009),
analogous to Charlson scores, based on the Elixhauser comomribidites.

❼ assignment of CMS HCC categories (Evans 2011; Pope et al. 2004)
❼ emulation of the AHRQ CCS (Agency for Healthcare Research and Quality 2012)

6. Limitations and future work

In general, computation of comorbidities as used in medical research ignores the fact that
both the comorbidity maps and the ICD schemes change from year-to-year. icd takes the
approach to be inclusive where appropriate, so extra or missing codes result in the same or
very similar comorbidity results. An extension could compute comorbidities using the correct
annual revision according to the year of the patient encounter.

Many countries have their own variations on the WHO ICD codes, and these are not yet
included in icd. These may affect comorbidity calculations. Also missing are WHO versions
of ICD codes, which may be possible in the future, dependent upon licensing restrictions.

The synthetic data used for benchmarking contained real and invalid codes. More benchmark-
ing could be done using real data with different proportions of invalid codes, and different
distributions of codes.

7. Conclusions

icd gives R the ability to do a common medical research task by doing fast and accurate
conversion of ICD-9 and ICD-10 into comorbidities. The key innovations are: the reduction
of the problem to an equivalent smaller task; and the use of sparse matrix multiplication
to compute comorbidities. This solution offers an efficient and elegant method that reduces
time and memory complexity. The benchmarks show that this technique scales to the biggest
health care data sets, and answers the goal of making this possible with modest computing
power in a reproducible workflow.
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