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Abstract

We implement a specialised iterative regression methodology in R for the analysis of
age-period mortality data based on a class of generalised Lee-Carter (LC) type modelling
structures. The LC-based modelling frameworks is viewed in the current literature as
among the most efficient and transparent methods of modelling and projecting mortality
improvements. Thus, we make use of the GLM modelling approach discussed in Renshaw
and Haberman (2006), which extends the basic LC model and proposes to make use of
a tailored iterative process to generate parameter estimates based on Poisson likelihood.
Furthermore, building on this methodology we develop and implement a stratified LC
model for the measurement of the additive effect on the log scale of an explanatory factor
(other than age and time). This modelling methodology is implemented in a publically
available collection of programming functions that facilitate both the preparation of
mortality data and the fitting and analysis of the given log-linear modelling structures.
The package also incorporates methods to produce forecasts of future mortality rates
and to compute the corresponding future life expectancy.

Keywords: generalised/extended Lee-Carter models, age-period-cohort models, iterative
estimation approach, statistical programming in R

1 Introduction

ilc is a publically available R package for the analysis of age-period mortality data that
implements specialised regression and descriptive methods to fit a generalised class of LC
type modelling structures. The purpose of the mortality modelling package described here
is to apply an improved modelling framework, which extends the standard LC method
based on the Normal error structure that was originally proposed in Lee and Carter (1992).
Consequently, we depart from the traditional Singular Value Decomposition (SVD) fitting
method, that assumes Gaussian residuals, and instead implement a regression tool based on
Poisson likelihood maximization process. In particular, we make use of the approach proposed
and illustrated in Renshaw and Haberman (2006), which generalises the basic LC modelling
framework and extends the work of Brouhns et al. (2002), to develop a tailored iterative
process for updating the parameter estimates. Furthermore, building on this methodology, we
develop and implement a new modelling approach, referred to as the stratified (or extended)
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LC model, that can be applied to measure the overall effect of an explanatory factor (other
than age and time) on the log mortality rates across all ages and periods.

This generalised modelling methodology is implemented within the R statistical software
in the form of a purpose-built set of command functions that apply the above mentioned
iterative fitting method. The package contains methods for the analysis of a class of six
different types of log-linear models in the GLM framework with Poisson errors that includes
the basic LC model too. In addition, the ilc package also include tools for the fitting and
analysis of the stratified LC model. In order to assess the goodness of fit of the regression,
the estimation routines support a range of residual analyses with corresponding target
fitted values, which can be visualised by specialised diagnostic plots. The package allows
preliminary data corrections, primarily in order to replace missing data-cells, but also to
eliminate potential outliers that might result from data inaccuracies. Further, the package
includes two simple methods of ‘closing-out’ procedures to correct the original data at very
old ages before the application of the model. Finally, the functionality of this package is
currently being enhanced with the inclusion of a number of control parameters and flexible
plotting methods.

The remaining sections of this paper are organised as follows. Section 2 presents in detail
the variants of the adopted modelling framework and discusses the main features of mortality
forecasting within the ilc application. Further, section 3 provides a brief description of the
iterative fitting approach used for the estimation of the model parameters. Following on,
section 4 gives instructions for installing and using the ilc package in R, including how to
prepare mortality data and how to fit the models and to run the regression diagnostics. Some
numerical illustrations are provided using the CMI pensioners mortality data.

2 Modelling Framework

The application and extension of the LC modelling approach has dominated the recent
literature in the field of mortality forecasting (see Brouhns et al. 2002; Renshaw and Haberman
2003a,b; Booth 2006 and further references therein). According to Booth (2006), the LC-
based approach is widely considered in the current literature to be among the most efficient
and transparent methods to date that produces fairly realistic life expectancy forecasts,
which are used as reference values for other modelling methods. For instance, the accepted
framework of modelling and projecting mortality improvements in the USA for the last
decade or so has been the LC-based age-period (AP) model (see Lee and Carter, 1992;
Lee, 2000). Similarly, the model has been applied successfully to Canadian (Lee and Nault,
1993), as well to Japanese (see Wilmoth, 1993) mortality data and formed part of official
projections. While the model has gained acceptance in the UK too, the persistent cohort
effects observed for generations born between 1925 and 1945 has led to a special adaptation of
the LC method by Renshaw and Haberman (2006), developing the so-called age-period-cohort
(APC) log-bilinear generalised linear models (GLM) with Poisson error structures.

In terms of forecasting, the LC family of models are part of the extrapolative stochastic
methods that assume that the observed historical trends of human mortality improvements
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will persist into the future. Many authors consider that the relative stability of the past
trends provide a sufficiently reliable basis for future projections. While the validity of these
assumptions have been debated (see Gutterman and Vanderhoof, 1998), the view of the
majority is that these methods still offer the most effective and dependable alternative to date.
Given the inherent complexity of the factors affecting human mortality and the lack of our
understanding of the intricate mechanisms governing our aging process (Brouhns et al., 2002),
econometric or structural models based on causality and interactions of biological and/or
demographic factors have so far failed to give rise to plausible theory-informed forecasting
methods (see Booth, 2006).

In the LC type modelling approach, the age effects are assumed to be constant in time
and the time-variant period and/or cohort effects are projected forward using autoregressive
time-series models. Thus, the period and/or cohort factors are extrapolated in time by a
stochastic ARIMA process (e.g. random walk with drift) in order to make forecasts of the
future force of mortality and, implicitly, future (period- and cohort-based) life expectancy.

In the modelling framework described here, we aim to provide a common platform for
fitting LC type models and making future forecasts of mortality and of life expectancy. Thus,
we model the force of mortality based on GLM regression methods using a log-link with a
class of parameterised predictors that contain bilinear terms. However, the presence of the
bilinear predictors prevents the application of the standard estimation methods normally
used within the GLM approach. Instead, the parameters are estimated through an iterative
minimisation technique applied to the deviance of the non-linear model structure that is
dependent on the choice of error distribution. In the following we describe in more detail the
particular modelling structures implemented in the ilc package.

2.1 Mortality Data

Consider a mortality experience observed at individual ages (x) and calendar years (t), giving
rise to a total of (k × n) available data cells, so that we can estimate the central mortality
rate (mxt) and the corresponding force of mortality (µxt) by

(µ̂xt = ) m̂xt =
yxt
ext

,

where yxt and ext represent the number of deaths and the matching central exposure for any
given subgroup, respectively. In addition, for each combination of age x and period t, we
define the cohort year z = t− x representing the year of birth of each subgroup in the data.

2.2 Basic Age-Period (AP) LC Model

The basic AP LC model was first proposed by Lee and Carter (1992) and it was introduced as
a type of principal components model of the mortality rate (mxt) dependent only on factors
related to age and period. The model is expressed as

LC : log (mxt) = αx + βxκt + εxt , (1)
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where the parameters are interpreted as follows:

αx represents a constant age-specific pattern of mortality;

κt measures the trend in mortality over time;

βx measures the age-specific deviations of mortality change from the overall trend;

εxt are Gaussian distributed N(0, σ2) random effects by age and time.

Due to the bilinear multiplicative construct (βxκt) present in equation (1), there is a clear
identifiability problem that is traditionally resolved by ensuring that these parameters satisfy
a pair of specified constraints, given by∑

x

βx = 1 ,
tn∑
t=t1

κt = 0 . (2)

Then, the standard LC model can be estimated using the singular value decomposition
(SVD) method that leads to the following estimator of the age-specific effects:

α̂x =
1

n

tn∑
t=t1

log (m̂xt) , (3)

which minimises the sum of squares of the error term (S =
∑

xt ε
2
xt). Lee and Carter also

advocates a set of adjustments to the κ̂t estimates in order to ensure that in each year, the
total deaths predicted by the model equals the total of the observed deaths

∑
x yxt.

Subsequently, the LC model was re-evaluated in the mortality forecasting literature (see
Tabeau, 2001; Brouhns et al., 2002; Renshaw and Haberman, 2003a) and it was proposed
that the model can also be formulated within a GLM framework with a generalised error
distribution. In this setting, the LC model parameters can be estimated by maximum
likelihood (ML) methods based on the choice of error distribution. Thus, in line with
traditional actuarial practice, this approach assumes that the age- and period-specific number
of deaths are independent realizations from a Poisson distribution with parameters

E [Yxt] = ext µxt , Var [Yxt] = φE [Yxt] , (4)

where φ is a measure of over-dispersion to allow for heterogeneity (e.g. from duplicate policies
in the case of insurance data). Making use of the LC type parameterization (1), now in terms
of the force of mortality (µxt), equations (4) correspond to a GLM model of the response
variable Yxt with log-link and non-linear parameterized predictor:

LC : ηxt = log(ŷxt) = log(ext) + αx + βxκt . (5)

In order to obtain unique parameter values, the above model is formulated in line with the
same constraints (2), while log(ext) is treated as an offset value during fitting.1

1The interpretation and treatment of model (5) in terms of a mortality reduction factor F (x, t) is beyond
the scope of the current paper (see Renshaw and Haberman, 2006).
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It is important to emphasise that model (5) is conceptually different from the original LC
framework (1), because the modelling errors have a generalised class of distribution that are
determined by the direct fitting of the number of deaths instead of the logarithmic transform
of the rates. That is, the GLM regression is based on ML methods with theory-based
distributional assumptions in contrast to the SVD fitting, which relies on empirical measures
(i.e. least squares). Indeed, the parameter estimates under the original framework (1) can
also be obtained within the GLM approach by adjusting the target variable to Yxt = log (mxt)
and applying the identity link function with a Normal error structure.

A measure of the overall goodness of fit in the GLM settings is the scaled deviance
between the observed and the fitted target variable values, which depends on the chosen
distributional assumption. Thus, ML point estimates under the GLM approach are obtained
at the minimum value of the total deviance of model (5) with Poisson errors, which is given
by

D (yxt, ŷxt) =
∑
x, t

dev (x, t) =
∑
x, t

2ωxt

{
yxt log

yxt
ŷxt
− (yxt − ŷxt)

}
, (6)

where dev(x, t) are the deviance residuals that depend on a set of prior weights ωxt where
ωxt = 1 is assigned to each non-empty data cell, with ωxt = 0 for empty cells.2 However,
standard minimisation techniques cannot be applied due to the presence of the bilinear
interaction term (βx κt). Thus, we resort to an alternative fitting strategy, as described
in Renshaw and Haberman (2006), which is based on an iterative Newton-Raphson method
applied to the deviance function (6). In section 3, we offer a brief description of the core
algorithmic rule that governs the fitting process of this approach, with specific application to
the LC model summarized in section 3.1.

Model diagnostics of goodness of fit can be carried out by visual inspection and by formal
testing of the following types of residuals, that are listed below in an increasing order of their
relevance in the current modelling framework:

a) log-rates: rxt = log (µxt)− log µ̂xt ;

b) rates: rxt = (µxt)− (µ̂xt) ;

c) deaths: rxt = yxt − ŷxt = ext µxt − ext µ̂xt ;

d) deviance: rxt = sign(yxt − ŷxt)
√

devxt
φ̂

, φ̂ = D(yxt, ŷxt)
ν

,

where φ̂ is an empirical scaling factor and ν represents the degrees of freedom, dependent
on the particular model structure.

Thus, in the ilc package, we make available plotting methods that can produce residual
plots of the above residuals with respect to age, period and year of birth. The latter can be

2In contrast to the GLM approach, in the SVD fitting the application of data matrix containing empty
cells is not possible. Nonetheless, as mentioned before, the ilc program can optionally correct missing data
cells by ’closing-out’ methods in order to improve fitting.
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used also to check for cohort effects in case these are not directly measured in the model.
As an additional model diagnostic, the program can also make plots of the fitted values
(i.e. either mortality rates or number of deaths) against age and period.

2.3 Generalized Family of LC Models

In a more recent development, the basic setting has been further extended to include an
additional bilinear term, containing a second period effect (as in Renshaw and Haberman,
2003b) or a cohort effect (as in Renshaw and Haberman, 2006). In particular, the latter
approach sheds new light on the early 20th century England and Wales mortality patterns.
Thus, the basic LC model can be transformed into a more general framework in order
to analyse the relationship between age and time and their joint impact on the mortality
rates. In the current application, we follow the APC modelling framework and fitting
methodology proposed by Renshaw and Haberman (2006) that specifies the force of mortality
by a generalised structure written as

M : µxt = exp
(
αx + β(0)

x ιt−x + β(1)
x κt

)
, (7)

where αx maps the main age profile of mortality, ιt−x and κt represent the cohort and period

effects, respectively, whereas β
(0)
x and β

(1)
x parameters measure the corresponding interactions

with age.
We note that model (7) represents a family of six generalized non-linear models of the LC

type structure with log-link function. The sub-categories of the overall model can be defined

by independently setting the interaction parameters
(
β
(0, 1)
x

)
to one of the following:

a) unknown (to be estimated);

b) =1 (fixed);

c) =0 (void).

Thus, the basic LC type structure results by defining the age-specific parameters as

LC : β(0)
x = 0 (∀x) and β(1)

x = βx .

Alternative formulation can result by cancelling out the period effect altogether and main-
taining only the age and the cohort effects, as follows:

AC : β(0)
x = βx and β(1)

x = 0 (∀x) .

Following the same approach, other 3 substructures can be defined, namely (using the
notations introduced by Renshaw and Haberman, 2006):

H0 : β(0, 1)
x = 1 ; H1 : β(0)

x = 1 ; H2 : β(1)
x = 1 .
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We note that the main regression function of the ilc package implements all six sub-
structures of model (7) making use of either the Gaussian or the Poisson error distribution.
The overall estimation of this class of model structures proceeds along the same iterative
minimisation techniques, which are described in section 3. However, in order to obtain unique
parameter estimates, we need to make slight modifications to the parameter updating cycle
depending on the particulars of the sub-structure. Given its overwhelming importance, we
illustrate the algorithmic rule of the most general APC framework (i.e. model M) in part 3.2.

2.4 Stratified (or Extended) LC Model

The purpose of the methodology described here is to quantify the differences in the mortality
experience of population subgroups differentiated by an additional measurable covariate
(other than age and period). This is a new modelling approach that assumes a direct additive
effect of an observable factor on the log mortality rates across all ages and calendar time
periods. Clearly, the usefulness of an all-encompassing additional factor strongly depends on
the size and nature of the mortality experience. Examples where additional effects might
exist that could act constantly across age and time in human mortality experience include
factors related to geographical, socio-economic or race differences. The modelling framework
and estimation methodology proposed here builds on the previous LC type structure with
Poisson errors presented in the previous section.

Consider a cross-classified mortality experience observed over age (x), period (t) and an
extra variate (g), made up of (k × n× l) data cells, such that we can estimate the central
mortality rates (mxtg) and the force of mortality (µxtg) for any given subgroup by the ratio
of the number of deaths and the corresponding central exposure (see section 2.1).

As in the previous approaches, our aim is to model the number of deaths (yxtg) within a gen-
eralized LC framework with a Poisson error structure, shaped by the following parameterized
(non-linear) predictor:

SLC : ηxtg = log(ŷxtg) = log(extg) + αx + αg + βx κt , (8)

where log(extg) is treated as an offset value during fitting and the model parameters are
subject to the usual constraints defined in equations (2).

We note that relationship (8) can be viewed as an adjusted LC model, whereas the overall
trend of mortality change (κt) over time and its interaction (βx) with age is the same for the
entire population, while the main effect is now stratified in order to capture both the effect of
age and an additional variate (g), namely:

µ̂xtg = exp (αx g + βx κt) ,

where αx g = αx + αg. We note that, in this formulation, the parameter αg measures the
relative differences between the age-specific mortality profiles on the log scale of the population
subgroups defined by the extra variate (g). It is interesting to observe that this modelling
structure corresponds to the “common factor” model of Li and Lee (2005). The estimation
method of this modelling framework is presented in more detail in section 3.3.
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This is the simplest extension of the LC model to allow for stratification. More complex
models involving βxg and κtg could also be introduced — these are left for future development.

2.5 Forecasting Approach

The forecasting of mortality rates in the case of the LC family of models (7) is based on time
series prediction of the calendar time dependent parameters (ιt−x, κt). This can be written
as follows:

µ̇x, tn+s = exp
(
α̂x + β̂(0)

x ι̇tn+s−x + β̂(1)
x κ̇tn+s

)
, s > 0 , (9)

where ι̇tn+s−x and κ̇tn+s represent the forecasted cohort and period effects, respectively.
Observe that, in the case of cohort effects, the forecasted values revert to the fitted parameters
(i.e. ι̇tn+s−x = ι̂tn+s−x) whenever the forecasting horizon falls within the available data range
(i.e. ∀ s ≤ x− x1). This forecasting method allows us to generate future average values and
to evaluate the future variability of the central mortality rates. In turn, the variability of the
predictions can be applied to measure the uncertainty in the longevity risk.3

The most common type of time series extrapolation methods applied in the LC framework
are the univariate ARIMA (Auto-Regressive Integrated Moving Average) processes, which
are characterised by three parameters (p, d, q). The type of ARIMA model used depends on
the fitted parameter profile within the available data range (e.g. the size of deviations from
the mean, extent of stationarity etc.). In the majority of applications of the LC framework
the random walk with drift (0,1,0) is the usual choice for the period effects (κt), which can
be expressed as:

κt = κt−1 + d+ et , (10)

where d measures the drift in the form of average annual deviations and et represents the
white noise in the stochastic process.

According to Booth et al. (2006), ARIMA(0,1,0) is a reasonable choice in the cases
where there is a stable linear tendency in the annual mortality improvements, but would
be inappropriate for the cases characterised by regular dynamic changes in slope (i.e. non-
linear). Nevertheless, the authors have found that this model has performed well in many
large data applications, even when a more complex model might have been indicated by
the shape of the period effects. Similarly, on inspection of the output results of our own
empirical trials, we are satisfied that this method is appropriate for many human mortality
data sets. In the current version of the ilc package, there are methods only for the time
dependent parameter to be projected forward, although with slight adjustments it is possible
to extrapolate (indirectly) the cohort dependent parameter values too. In future versions,
we plan to implement complete and automated forecasting methods using a wider range of

3We recognise that a method based purely on the extrapolated time dependent parameters might fail
to capture all of the variability in future predicted values because it does not allow for the uncertainty in
the other model parameters. However, as noted by Lee and Carter (1992), this simplified approach should
still provide a good approximation for the calculation of the prediction intervals. This has recently been
explored in extensive bootstrapping investigations, as evidenced, for example by Renshaw and Haberman
(2008); Haberman and Renshaw (2009).
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ARIMA models for all six modelling structures considered in this application. Note there are
several choices for the forecast formula – thus, equation (9) uses the model µx, tn as the jump
off value for forecasting. We could also use last observed data point µ̂x, tn (see Lee, 2000) or
an average value.

3 Fitting Methodology

As mentioned before, the fitting methodology implemented in this application is based on
an iterative algorithm that minimises the deviance function. That is, we make use of a
cyclical updating process of the parameter estimates until the minimum difference between
the likelihood of the fitted model and the likelihood of the saturated model (i.e. one parameter
for each observation) is achieved. Thus, the updating mechanism for a given parameter θ
is provided by the Newton-Raphson minimisation method applied to the deviance function,
which can be expressed as

u(θ̂) = θ̂ −
∂ D
∂ θ
∂2D
∂ θ2

. (11)

Looking at the deviance function (6) with Poisson error structure, we can observe that

∂ D

∂ θ
=
∑ ∂ dev

∂ θ
=
∑

2ω

{
−y ŷ

′

ŷ
+ ŷ′

}
=
∑

2ω
ŷ′

ŷ
(ŷ − y) =

∑
2ω a (ŷ − y) , (12)

where

ŷ′ =
∂ ŷ

∂ θ
⇒


∂ ŷ
∂ αx

= ŷ
∂ ŷ
∂ βx

= κt ŷ
∂ ŷ
∂ κt

= βx ŷ

= a ŷ such that


a = 1

a = κt

a = βx

.

Making use of the above simplified notations, we can express the second partial derivative of
the deviance function as follows:

∂2D

∂ θ2
=
∑

2ω a ŷ′ =
∑

2ω a2ŷ . (13)

Substituting the expressions (12) and (13) into (11) yields the following general fitting
routine:

u(θ̂) = θ̂ −
∑

2ω a (ŷ − y)∑
2ω a2ŷ

= θ̂ +

∑
2ω a (y − ŷ)∑

2ω a2 ŷ
. (14)

We note that similar updating rule can be determined in the case of the model with
Gaussian distributed errors (see Renshaw and Haberman, 2006). Without going into further
details, we note that the ilc package implements the updating algorithms corresponding to
the models with both Gaussian and Poisson error structures. For the purpose of the current
paper, in the following parts we focus on the detailed estimation methodology of the latter
with respect to the base LC, the APC and the SLC modelling frameworks.
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3.1 Updating cycle of the base LC fitting

1. Get appropriate initial values:

α̂x = 1
n

∑
t log m̂xt (i.e. make use of the SVD estimate (3));

β̂x = 1
k
; κ̂t = 0 .

→ calculate fitted values ŷ(α̂x, β̂x, κ̂t) → calculate deviance D(yxt, ŷxt) .

2. Update parameter α̂x :

α̂x = α̂x +

∑
t 2ω (y − ŷ)∑

t 2ω ŷ

→ calculate fitted values ŷ(α̂x, β̂x, κ̂t) → calculate deviance D(yxt, ŷxt) .

3. Update parameter κ̂t :

κ̂t = κ̂t +

∑
x 2ω (y − ŷ)∑
x 2ω β̂2

x ŷ

– adjust the updated parameter such that κ̂t = κ̂t − κ̂t ;
→ calculate fitted values ŷ(α̂x, β̂x, κ̂t) → calculate deviance D(yxt, ŷxt) .

4. Update parameter β̂x :

β̂x = β̂x +

∑
t 2ω (y − ŷ)∑
t 2ω κ̂2t ŷ

→ calculate fitted values ŷ(α̂x, β̂x, κ̂t) → calculate deviance Du(yxt, ŷxt) .

5. Check deviance convergence:
∆D = D −Du

were Du is the updated deviance at step 4.
– if ∆D > 1× 10−6 ⇒ goto step 2.
– Stop iterative process once ∆D ≈ 0 and take the fitted parameters as the ML

estimates to the observed data.
– Alternatively, stop if ∆D < 0 for a consecutive 5 updating cycles and consider

using other starting values or declare the iterations non-convergent.

6. Once convergence is achieved, re-scale the interaction parameters: β̂x and κ̂t :

β̂x =
β̂x∑
x β̂x

; κ̂t = κ̂t ×

(∑
x

β̂x

)
,

in order to satisfy the usual LC model constraints
∑

t κt = 0 and
∑

x βx = 1.
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3.2 Updating cycle of APC fitting

In the full age-period-cohort GLM model (7), the sum log (ext) + αx is treated as an offset
value. Consequently, the αx parameter is not adjusted during the iterative process when both
the year and the cohort effects are included in the model structure.

1. Estimate the (fix) age effects:

α̂x = 1
n

∑
t log m̂xt (i.e. make use of the SVD estimate (3));

2. Get appropriate initial values:

β̂
(0)
x = β̂

(1)
x = 1

k
;

Estimate the simplified period-cohort predictor (i.e. model H0, see section 2.3):
ηxt = (log (ext) + αx) + ιz + κt;

in order to get initial values for ιz and κt .
→ calculate fitted values ŷ(α̂x, β̂

(0)
x , β

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .

3. Update parameter ι̂z :

ι̂z = ι̂z +

∑
x 2ω (y − ŷ)∑

x 2ω
(
β̂
(0)
x

)2
ŷ

– shift the updated parameter such that ι̂z = ι̂z − ι̂1 ;
→ calculate fitted values ŷ(α̂x, β̂

(0)
x , β

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .

4. Update parameter β̂
(0)
x :

β̂(0)
x = β̂(0)

x +

∑
t 2ω (y − ŷ)∑
t 2ω ι̂2z ŷ

→ calculate fitted values ŷ(α̂x, β̂
(0)
x , β

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .

5. Update parameter κ̂t :

κ̂t = κ̂t +

∑
x 2ω (y − ŷ)∑

x 2ω
(
β̂
(1)
x

)2
ŷ

– shift the updated parameter such that κ̂t = κ̂t − κ̂1 ;
→ calculate fitted values ŷ(α̂x, β̂

(0)
x , β

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .

6. Update parameter β̂
(1)
x :

β̂(1)
x = β̂(1)

x +

∑
t 2ω (y − ŷ)∑
t 2ω κ̂2t ŷ

→ calculate fitted values ŷ(α̂x, β̂
(0)
x , β

(1)
x , ι̂z, κ̂t) → calculate deviance D(yxt, ŷxt) .
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7. Check deviance convergence:
∆D = D −Du

were Du is the updated deviance at step 6.
– if ∆D > 1× 10−6 ⇒ goto step 3.
– Stop iterative process once ∆D ≈ 0 and take the fitted parameters as the ML

estimates to the observed data.
– Alternatively, stop if ∆D < 0 for a consecutive 5 updating cycles and consider

using other starting values or declare the iterations non-convergent.

8. Once convergence is achieved, re-scale the interaction parameters: β̂
(0)
x , β̂

(1)
x , ι̂z and κ̂t :

β̂(0)
x =

β̂
(0)
x∑
x β̂

(0)
x

, β̂(1)
x =

β̂
(1)
x∑
x β̂

(1)
x

; κ̂t = κ̂t ×

(∑
x

β̂(1)
x

)
,

in order to satisfy the APC model constraints
∑

x β
(0)
x =

∑
x β

(1)
x = 1 and

∑
t κt = 0.

3.3 Updating cycle of SLC fitting

Due to the stratified nature of the main effect variable (αx g) and the target Poisson error
structure, the parameters of model (8) cannot be fitted by the SVD method used in the
traditional LC approach. Therefore, in order to estimate the above SLC model (8) we make
use of the iterative methodology given in section 3 by making a few necessary adjustments
to allow for the extra explanatory variable (αg ). Thus, the extended deviance function of
model (8) with Poisson errors is given by the sum of the deviance residuals in all of the
available data cells, and this can be written as:

D (yxtg, ŷxtg) =
∑
x, t, g

dev (x, t, g) =
∑

2ω

{
y log

y

ŷ
− (y − ŷ)

}
, (15)

where in the last sum notation we drop the subscripts for the sake of simplicity.
Then, we make the corresponding adjustments regarding the extra dimension in the model,

so that the Newton-Raphson minimising routine of the adjusted deviance function (15) can
proceed along similar lines to those described earlier. Thus, we can make use of equations (12)
and (13) in order to find the first and the second order differentials, as follows:

∂ ŷ

∂ αg
= ŷ (= a ŷ) .

Hence, one needs to substitute a = 1 value in the updating rule (14) corresponding to
parameter αg . The iterative calculations need to take into account the higher dimension
in the cross-classified data by age, period and factor g . In the following, we demonstrate
the adjusted updating cycle that allows for this extra dimension in the observed mortality
experience.
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1. Get appropriate initial values:

α̂x = 1
n×l

∑
t, g log m̂xtg (i.e. the average logrates across all t, g indexed cells);

α̂g = 0; β̂x = 1
k
; κ̂t = 0 .

→ calculate fitted values ŷ(α̂x, α̂g, β̂x, κ̂t) → calculate deviance D(yxtg, ŷxtg) .

2. Update parameter α̂x :

α̂x = α̂x +

∑
t, g 2ω (y − ŷ)∑

t, g 2ω ŷ

→ calculate fitted values ŷ(α̂x, α̂g, β̂x, κ̂t) → calculate deviance D(yxtg, ŷxtg) .

3. Update parameter α̂g :

α̂g = α̂g +

∑
x, t 2ω (y − ŷ)∑

x, t 2ω ŷ

– adjust the updated parameter such that α̂g = α̂g − α̂g1 , where g1 is the first
level/group of the extra variate g (i.e. set the first level as a base value);
→ calculate fitted values ŷ(α̂x, α̂g, β̂x, κ̂t) → calculate deviance D(yxtg, ŷxtg) .

4. Update parameter κ̂t :

κ̂t = κ̂t +

∑
x, g 2ω (y − ŷ)∑
x, g 2ω β̂2

x ŷ

– adjust the updated parameter such that κ̂t = κ̂t − κ̂t ;
→ calculate fitted values ŷ(α̂x, α̂g, β̂x, κ̂t) → calculate deviance D(yxtg, ŷxtg) .

5. Update parameter β̂x :

β̂x = β̂x +

∑
t, g 2ω (y − ŷ)∑
t, g 2ω κ̂2t ŷ

→ calculate fitted values ŷ(α̂x, α̂g, β̂x, κ̂t) → calculate deviance Du(yxtg, ŷxtg) .

6. Check deviance convergence:
∆D = D −Du

were Du is the updated deviance at step 5.
– if ∆D > 1× 10−6 ⇒ goto step 2.
– Stop iterative process once ∆D ≈ 0 and take the fitted parameters as the ML

estimates to the observed data.
– Alternatively, stop if ∆D < 0 for a consecutive 5 updating cycles and consider

using other starting values or declare the iterations non-convergent.
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7. Once convergence is achieved, re-scale the interaction parameters: β̂x and κ̂t :

β̂x =
β̂x∑
x β̂x

; κ̂t = κ̂t ×

(∑
x

β̂x

)
,

in order to satisfy the usual LC model constraints
∑

t κt = 0 and
∑

x βx = 1.

4 Application of the Generalized LC Models in R with

ilc

In the following, we present the most important features of using the ilc package to fit and
analyse age and time dependent mortality models in R.4 The data manipulation and regression
methods are illustrated in context of the CMI (lives) data containing the mortality experience
of male life office pensioners retiring at or after normal retirement age. The data is made up
of observed central exposure and deaths for ages 50-108, all durations combined, investigation
years 1983-2003 (Source: Continuous Mortality Investigation). The main regression and
diagnostic methods used in the ilc package are adequate to run independently, however most
data formatting and life expectancy forecasting features are built such that to integrate with
the demography and forecast packages of R, written by Rob J Hyndman.5 However, the ilc
package accommodates many specific methods which allow improved inspection and graphical
visualisation of both the mortality data and the regression outputs.

4.1 Preparing the Mortality Data for Analysis

In order to fit the generalised LC type family models the mortality data need to be arranged
in a demogdata class format of the demography package. For instance, assuming that the
above mentioned CMI mortality experience is made up by the cross-tabulated mortality rates
(mu) and the central exposures (e) by individual ages (x) and calendar years (t) sequences,
we can create an R data object (dd.cmi.pens) for the generalised LC analysis by making use
of the following purpose-built function:

> dd.cmi.pens <− demogdata(data=mu, pop=e, ages=x, years=t, type=”mortality”,
label=”CMI”, name=”male”)

where the arguments data and pop must be matrices (or data-frames) of equal dimensions.
Also, the arguments label and name are additional (string) qualifiers that specify the origin
and the series (e.g. gender) of the data, respectively. Such data objects can contain more than
one set of mortality experiences that can be identified by the name argument. For further
details and examples of using the demogdata format/function, the reader is referred to the

4A gentle introduction for beginners about methods of statistical analysis and graphical illustration in the
R programming environment is provided in Venables et al. (2005).

5Detailed reference manuals of the demography and other complementary packages are available at URL:
www.robhyndman.info/Rlibrary/demography.
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demography package manual. Following on, a summary description can be printed out by
typing the data object’s name:

> dd.cmi.pens
Mortality data for CMI

Series: male
Years: 1983 - 2003
Ages: 50 - 108

Alternatively, more detailed data inspections and/or graphical illustrations may be produced
using the following type of commands:6

– print a query table of mortality rates:
> insp.dd(dd.cmi.pens, age=50:80, year=1985:1990)

– print a query table of central exposures:
> insp.dd(dd.cmi.pens, what=’pop’, age=70:100, year=1988:1993)

– print a query table of number of deaths:
> insp.dd(dd.cmi.pens, what=’deaths’, age=seq(100), year=1980:2010)

– produce simple plots (i.e. without legend) of log- or untransformed rates:
> plot(dd.cmi.pens)
> plot(dd.cmi.pens, transf=F)

– produce annotated plots (i.e. with legend) of log- or untransformed rates:
> plot dd(dd.cmi.pens, xlim=c(40, 110), lpar=list(x.int=-0.2, y.int=0.9, cex=0.85))

where the optional lpar list controls the legend layout (see pane a) of Figure 1)
> plot dd(dd.cmi.pens, year=1985:1995, transf=F)
> plot dd(dd.cmi.pens, year=1995:1997, transf=F, lty=1:3, col=1:3)

– produce annotated plots of number of deaths: (see pane b) of Figure 1)
> tmp.d <− extract.deaths(dd.cmi.pens, ages=55:100)

# without correction of empty cells, or
> tmp.d <− extract.deaths(dd.cmi.pens, ages=55:100, fill=’perks’)

# This makes use of fill.demogdata() function to replace all
# empty cells using the ’Perks’ model (see ilc source code).
# Other correction methods available are: ’interpolate’ and ’mspline’
# (see demography package manual).

> tmp.d$type <− ’mortality’
> plot dd(tmp.d, year=1995:2003, transf=F, lty=1:8)

Since in the case of the SLC model, the mortality experience is cross-classified by an
additional covariate, the data set is best represented by a three dimensional matrix (i.e. array).

6Observe here that only the available segments of data are used whenever the ages and/or years sequences
mismatch the given data array.
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Figure 1: Illustration of CMI (lives) pensioners mortality experience:
a) log central mortality rates and b) observed number of deaths.

For this purpose, the ilc package introduces a special class of data object (rhdata) that holds
the necessary information about the grouping factors and the aggregate data of number of
deaths, central exposures and the corresponding mortality rates. For example, consider a
raw data set (tab) that comes in the form of individual observations of survival times and
additional covariate(s), such as:

> tab[1:5, ] # show first 5 observations only

refno dob dev event cov1 cov2 (dob) (dev)
1 -14485 15177 1 k 1 05/05/1920 21/07/2001
2 -13993 15177 1 j 1 09/09/1921 21/07/2001
3 -15800 15177 0 a 3 ⇒ 28/09/1916 21/07/2001
4 -15973 15177 1 c 2 08/04/1916 21/07/2001
5 -12776 15177 1 j 1 08/01/1925 21/07/2001

where the columns headed dob and dev represent the date of birth and of the date of event
(i.e. 1=death, 0=survive), respectively, of individual cases with reference refno, that must be
entered in a format of class date (i.e. Julian dates – number of days since 1/1/1960, see survival
package manual). Further, the last columns, headed cov1 and cov2, represent some additional
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grouping factors (other than age and time) with observable levels a–m and 1–3, respectively.
Then the rhdata function of ilc can extract the aggregate data matrices for individual ages
60–95 over the period 2000–2005 by, say, cov1 and place them in the appropriate format:7

> mtab <− rhdata(dat=tab, covar=’cov1’, xbreaks=60:96, xlabels=60:95,
ybreaks=mdy.date(1,1,2000:2006), ylabels=2000:2005, name=’M’, label=’MDat’)

A short synopsis about the data source and the cross-tabulation parameters can be printed
out by typing the newly created rhdata object’s name:

> mtab
Multidimensional Mortality data for: MDat [M]
Across covariates:

years: 2000 - 2005
ages: 60 - 95
cov1: a, b, c, d, e, f, g, h, i, j, k, l, m

Here, we note that the sub-grouping of the data set can be carried out by more than one
additional covariate at once by specifying the argument covar=c(’cov1’, ’cov2’).

Due to the extensive data segmentation, we are likely to get a considerable number of
undetermined mortality rates corresponding to zero exposures. Thus, it can be useful, before
fitting the SLC model, to make use of a suitable ’closing-out’ procedure to replace these data
cells. This can be carried out with the aid of fill.rhdata function, as follows:

> mtab <− fill.rhdata(mtab, method=’mspline’)
# multidimensional wrapper of the fill.demogdata() function;

The above routine makes use of the smooth.demogdata function wherever it is needed in
order to fit monotonic regression splines (see demography package manual) to the age-specific
mortality rates and replaces all zero or missing values. Similarly, it is possible to make use of
the ’interpolate’ method from the demography package that interpolates between the values
corresponding to the available nearby years of the same age group. An alternative smoothing
method implemented in the ilc package is ’perks’, which attempts to fit a generalised Perks

model
(
µx = a

1+exp(b−px)

)
to the age-specific mortality rates (see Thatcher, 1999).

For demonstration and/or testing purposes, it may be helpful to create an artificially
stratified mortality experience with a Poisson error structure from a demogdata class object.
The function dd.rfp can take a demogdata class object of ’mortality’ type and adjust the
observed log mortality rates by a vector of Poisson distributed additive effects (i.e. reduction
factors) with predetermined means (for further details see ilc source code). For instance,
taking the CMI experience as the base data set, we can produce a randomly stratified
mortality data of rhdata format, as follows:

> rfp.cmi <− dd.rfp(dd.cmi.pens, rfp=c(0.5, 1.2, -0.7, 2.5))

7We note that the column names dob, dev and event of the source data set (tab) cannot be changed.
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with a data summary shown as
> rfp.cmi

Multidimensional Mortality data for: CMI [male]
Across covariates:

years: 1983 - 2003
ages: 50 - 108
X: base, a, b, c, d

Plots of the central exposures and log mortality rates held in the rfp.cmi by the additional
covariate (X) can be produced in the following way (see Figure 2):

> matplot(rfp.cmi$age, rfp.cmi$pop[,,1], type=’l’, xlab=’Age’,
ylab=’Ec’, main=’Base Level’) # base level

> matplot(rfp.cmi$age, rfp.cmi$pop[,,2], type=’l’, xlab=’Age’,
ylab=’Ec’, main=’Level 1’) # first level (a)

...

> matplot(rfp.cmi$age, log(rfp.cmi$mu[,,1]), type=’l’, xlab=’Age’,
ylab=’log(mu)’, main=’Base Level’) # base level

> matplot(rfp.cmi$age, log(rfp.cmi$mu[,,2]), type=’l’, xlab=’Age’,
ylab=’log(mu)’, main=’Level 1’) # first level (a)

...

The plots illustrated in Figure 2 of the randomised data (rfp.cmi) with respect to the
(artificial) additional effect (X) show entirely indistinguishable central exposures and log
mortality profiles. However, as will be demonstrated further on, the SLC fitting method can
successfully identify the base mortality experience and estimate accurately the means of the
additive effects.

4.2 Fitting the Mortality Models and Making Forecasts

In order to explore the fitted model objects and to run diagnostic checks, the ilc package
caters for specialised methods of generic functions (like coef, plot, fitted and residuals) and
also contains model specific utility functions (like deviance.lca, residual plots, and fitted plots).
In the following, we illustrate the use of these tools and we give a brief interpretation of the
outputs.

4.2.1 Analysis of the Generalised LC Model Structures

The lca.rh is a universal routine of the ilc package developed to fit any of the six variants of
the LC model structures (i.e. including the base LC model) using the iterative fitting method
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Figure 2: Illustration of randomised CMI (lives) pensioners mortality experience:
central exposures and log central mortality rates by additional covariate (X).

(see sections 2 and 3). The function arguments are defined as:8

> args(lca.rh)
function (dat, year = dat$year, age = dat$age, series = 1, max.age = 100, dec.conv = 6,

clip = 3, error = c(”poisson”, ”gaussian”),
model = c(”m”, ”h0”, ”h1”, ”h2”, ”ac”, ”lc”),
restype = c(”logrates”, ”rates”, ”deaths”, ”deviance”), scale = F, interpolate = F,
verbose = T, spar = NULL)

The functionality of the arguments are aimed to be self-explanatory and user-friendly. In
the following we clarify further the main features:

dat : source data object of demogdata class;

series : target series to be used from the source data;

8We acknowledge that lca.rh is designed to mimic some of the features and functionality of the lca function
of the demography package. Also, as mentioned before, it makes use of the ’interpolate’ correction method to
replace missing data cells. However, the modelling and fitting methodology implemented in lca.rh are based
entirely on the iterative approach presented in this paper.
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dec.conv : number of decimal places used to achieve convergence;

clip : number of marginal cohorts to remove from the rectangular data array (i.e. give 0
weights – it’s only applicable to the first 5 models);

error : type of error structure of the model choice;

model : model choice (see section 2.3) – it can be a character or a numeric value (1-6)
corresponding to the described models;

restype : type of residuals, which controls the type of the fitted value too;
Thus, in the cases of ’logrates’ and ’rates’ the function returns as fitted values the log
and untransformed mortality rates, respectively. Likewise, the choices of ’deaths’ and
’deviance’ correspond to the fitted number of deaths.

scale : based on lca of demography package to re-scale the interaction parameters so that
the κt has drift parameter equal to 1;

spar : numerical smoothing spline parameter (see smooth.spline function);
If not NULL (i.e. ranging from 0 to 1, with a recommended value of 0.6) the interaction

effects
(
β
(0,1)
x

)
are smoothed out after fitting. As a consequence, the period/cohort

effects are adjusted accordingly.

verbose : logical parameter to control the output amount of process information;
If set to TRUE the program prints out the updated deviance values along with the
starting and final parameter estimates.

In the following two examples, we aim to give a general feel of how to make use of the
above iterative fitting routine and then we discuss briefly the program outputs:

1) Estimate the base LC model (with Poisson errors)

In this application, we make use of the CMI (lives) data up to the age of 100 to avoid any data
irregularities at very old ages and any remaining 0/NA values we can replace by interpolation:

> mod6 <− lca.rh(dd.cmi.pens, mod=’lc’, interpolate=T, verbose=F)
Original sample: Mortality data for CMI

Series: male
Years: 1983 - 2003
Ages: 50 - 108

Applied sample: Mortality data for CMI (Corrected: interpolate)
Series: male
Years: 1983 - 2003
Ages: 50 - 100

Fitting model: [ LC = a(x)+b1(x)*k(t) ]
- with Poisson error structure and with deaths as weights -
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Iterations finished in: 14 steps
Warning messages:
1: In lca.set(dat, year, age, series, max.age, interpolate) :

⇒ data above age 100 are grouped.
2: A total of 62 0/NA central mortality rates are re-estimated by the ”interpolate” method.
3: In lca.set(dat, year, age, series, max.age, interpolate) :

There are 45 cells with 0/NA exposures, which are ignored in the current analysis.
Try reducing the maximum age or choosing a different age range.
Alternatively, fit LC model with error= ”gaussian” .
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Figure 3: LC regression parameters for CMI male pensioners (lives) for age range 50 – 100
over the observation period of 1983 – 2003.

We note here that the same call to lca.rh function with error= ”gaussian” setting, computes
the standard LC model of Lee and Carter (1992), however, using the iterative fitting method
instead of the traditional SVD. Alternatively, the lca function of the demography package can
fit the standard LC model with SVD approach by issuing a call like:

> modlc <− lca(dd.cmi.pens, interpolate=T, adjust=’none’)

that yields the same parameter estimates (for further details of using the lca function, the
reader is referred to the demography manual).

A short printout of the model summary is produced by:
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> mod6

—————————————————————–
Iterative Lee-Carter Family Regression:
Fitted Model: LC = a(x)+b1(x)*k(t)

—————————————————————–
Call: lca.rh(dat = dd.cmi.pens, model = ”lc”, interpolate = T, verbose = F)
Error Structure: poisson
Data Source: CMI [male] over

calendar years: (1983 - 2003) and ages: (50 - 100)
Deviance convergence in: 14 iterations

dev dev.c df df.c
1 Mean deviance base 1.386 df base 905
2 Mean deviance total 1.733 df tot 969
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Figure 4: LC cross-classified fitted values for CMI male pensioners (lives) for age range
50 – 100 over the observation period of 1983 – 2003.
a) by age versus year and b) by year versus age

The estimated model parameters can be printed out using the coef function:

> coef(mod6)
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ax ax.c bx1 bx1.c kt kt.c
1 50 -3.665 50 0.110 1983 13.735
2 51 -4.199 51 0.048 1984 11.988
3 52 -4.633 52 0.037 1985 12.331
4 53 -4.812 53 0.017 1986 9.747
...

where the columns headed with .c extension give the estimated coefficients and the other
columns indicate the corresponding parameter labels. Alternatively, we can illustrate graphi-
cally the fitted parameters (see Figure 3) by the simple command:

> plot(mod6)
Further graphical illustrations of the regression outcome can be produced with the following

command:

> fitted plots(mod6)

that plots the cross-classified fitted values by age against calendar year;and also by year
against age (see Figure 4 panes a) and b), respectively).

According to Renshaw and Haberman (2006), the preferred type of residuals to conduct
diagnostic checks on the model are the standardised deviance residuals. Thus, we should
change the current LC fitted object’s residual values from ’logrates’ type, which was only
needed in order to produce the corresponding fitted values. In order to compute the ’deviance’
residuals from a fitted object with different type of residuals, we can make use of the function
lca.dev.res, though this utility also needs the central exposures matrix used in the LC fitting
(see source code for further details and examples). In cases where deviance convergence is
achieved fairly quickly, it is also possible to simply re-fit the original model, as follows:

> mod6d <− lca.rh(dd.cmi.pens, mod=’lc’, restype=’deviance’, interpolate=T, verbose=F)

Then, we can run the residuals plotting method on the new output object (see Figure 5):

> residual plots(mod6d)

although, we note that the above function works on any type of residuals of the LC class
family models.

Finally, we can produce forecasts of future mortality improvements and the corresponding
future life expectancy based on the fitted LC model. The ilc application makes use of the
forecast package to predict future values of the trend parameter (κt) using a traditional
ARIMA(0, 1, 0) model over a given time horizon. This is accomplished by running the forecast
method on the fitted model object. For instance, in order to produce a forecast over a 20
years period, we can issue the following type of command:

> forc6 <− forecast(mod6, h=20, jump=’fit’, level=90, shift=F)

which returns a “fmforecast” class object that contains the predicted mean trend parameter
and the corresponding predicted mean mortality rates, alongside with their lower and upper
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limits of a 90 % confidence interval (CI).
We can visualise the forecasted log-mortality rates with the demogdata plotting method:

> plot dd(forc6, xlim=c(45, 100), lpar=list(x.int=-0.2, y.int=0.9, cex=0.95))

Figure 6 shows the above and we can note that the overly low rates at age 50 are the results
of the corresponding peaked interaction effect (β50), as it can be seen in Figure 3.

Further, the forecast object forc6 also contains the predicted mean life expectancy and its
90 % CI, which can be extracted by:

> forc6$e0
Time Series:
Start = 2004
End = 2023
Frequency = 1

e0 e0.lo e0.hi
2004 34.18014 33.63142 34.73744
2005 34.46238 33.66483 35.28137
2006 34.74726 33.74325 35.79047
2007 35.03522 33.84356 36.28940
2008 35.32670 33.95714 36.78839

However, we can also compute life expectancy forecasts at other ages too by making use of
the following demography package command, say, at target age of 60:9

> le6 <− life.expectancy(forc6, age=60)
The ilc package contains two specialised functions: fle.plot and flc.plot that can make

forecasts and produce the corresponding plots directly from the LC model object. The
former creates plots only of the predicted (period) life expectancy at any age with the chosen
prediction interval (PI), whereas the latter produces the plots of both the predicted trend
parameter and the predicted life expectancy at any age alongside the estimated PIs. For
example, Figure 7 illustrates the plotting output of the following command:

> flc.plot(mod6, at=60, h=30, level=90)

with the same parameter settings as in the previous examples.

2) Estimate the APC model (with Poisson errors)

In this application we make use of the CMI data using a restricted age range (e.g. to avoid
data correction) and ’deviance’ residuals. It is possible to choose a reduced convergence
precision to achieve faster processing, although for proper fit it is recommended to use the
default value (it can lead to a slower convergence cycle for this model):

> mod1 <− lca.rh(dd.cmi.pens, age=60:95, res=’dev’, dec=3, verb=F)

9Further details about the application of this command are available in the demography package help files
– e.g. by typing at the R console > ?life.expectancy .
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Figure 5: LC standardised deviance residuals for CMI male pensioners (lives) for age range
50 – 100 over the observation period of 1983 – 2003.25
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Figure 7: Illustration of LC forecast over a 20 years prediction horizon with
90 % CI for CMI male pensioners (lives)
a) trend parameter κt and b) future life expectancy at age 60.
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Original sample: Mortality data for CMI
Series: male
Years: 1983 - 2003
Ages: 50 - 108

Applied sample: Mortality data for CMI
Series: male
Years: 1983 - 2003
Ages: 60 - 95

Fitting model: [ M = a(x)+b0(x)*i(t-x)+b1(x)*k(t) ]
- with Poisson error structure and with deaths as weights -

Iterations finished in: 445 steps
Warning messages:
1: In lca.set(dat, year, age, series, max.age, interpolate) :

There are 1 cells with 0/NA mu, which are ignored in the current analysis.
Try reducing the maximum age or setting interpolate=TRUE.

2: In lca.rh(dd.cmi.pens, age = 60:95, int = F, res = ”dev”, dec = 3, :
The cohorts outside [1891, 1940] were zero weighted (clipped).

The corresponding model summary can be printed out by writing:

> mod1

—————————————————————————
Iterative Lee-Carter Family Regression:
Fitted Model: M = a(x)+b0(x)*i(t-x)+b1(x)*k(t)

—————————————————————————
Call: lca.rh(dat = dd.cmi.pens, age = 60:95, dec.conv = 3, restype = ”dev”,

interpolate = F, verbose = F)
Error Structure: poisson
Data Source: CMI [male] over

calendar years: (1983 - 2003) and ages: (60 - 95)
Deviance convergence in: 445 iterations

dev dev.c df df.c
1 Mean deviance base 1.386 df base 597
2 Mean deviance total 1.648 df tot 684

Similarly, in the case of the APC fitted model, we can repeat the above procedures to
investigate the regression, that gives the following outputs:

> coef(mod1)

itx itx.c ax ax.c bx0.c bx1.c kt kt.c
1 1888 0.000 60 -3.923 -0.049 0.051 1983 0
2 1889 0.000 61 -4.15 -0.021 0.03 1984 -1.267
3 1890 0.000 62 -4.307 0.04 0.039 1985 -1.001
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4 1891 3.381 63 -4.394 0.027 0.018 1986 -2.901
...

where we can note that both trend parameters (κt, ιt−x) are re-scaled during fitting to start
from 0 (see section 3.2). The regression plot in Figure 8 reveals a strong cohort effect for the
pensioners born between 1910–1920:

> plot(mod1)
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Figure 8: APC regression parameters for CMI male pensioners (lives) for age range 60 – 95
over the observation period of 1983 – 2003.

The other 4 model constructs can be estimated in a similar way by entering the cor-
responding model argument value in the main function call. Usually, in the case of large
data sets, the fitting cycle is fast and produces stable parameter estimates. We have not
yet implemented any object oriented methods in the ilc package to produce forecasts for
the models that allow for the cohort effect. This feature is going to be developed in future
versions of the software.

4.2.2 Analysis of the Stratified LC Model

The ilc package provides the purpose-built elca.rh program to fit the extended (i.e. stratified)
LC model structure using the iterative fitting method (see sections 2.4 and 3.3). This function
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follows closely the structure of the lca.rh regression routine and offers the same choice of
argument settings. In addition, fixed base age effect (αx) can be imputed through the optional
ax.fix argument, which are then not modified during the fitting process. The function is
specified in the following way:10

> args(elca.rh)
function(dat, year=dat$year, age=dat$age, dec.conv = 6, error = c(”poisson”, ”gaussian”),

restype = c(”logrates”, ”rates”, ”deaths”, ”deviance”), scale = F, interpolate = F,
verbose = T, spar=NULL, ax.fix = NULL)

where the arguments listed below have an updated functionality from the previous description:

dat : source data object of rhdata class with only one additional grouping factor (i.e. covariate
other than age and time);

ax.fix : vector of predetermined parameter estimates of the main (base) age effect, which
must be of the same length as the age argument.
Therefore, if it is not NULL the parameter (αx) is ignored during the updating cycle.

The only multidimensional data sets available to us, that were used to develop this part
of the program, are currently commercially sensitive and thus are restricted for publication.
Nevertheless, we can still demonstrate the use of the program on the randomly stratified
CMI mortality data set (rfp.cmi) presented in section 4.1, as follows:

> mod6e <− elca.rh(rfp.cmi, age=50:100, interp=T, dec=3, verb=F)
Original sample: Multidimensional Mortality data for: CMI [male]
Across covariates:

years: 1983 - 2003
ages: 50 - 108
X: base, a, b, c, d

Applied sample: Multidimensional Mortality data for: CMI [male]
Across covariates:

years: 1983 - 2003
ages: 50 - 100
X: base, a, b, c, d

Fitting model: [ LC(g) = a(x)+a(g)+b(x)*k(t) ]
- with Poisson error structure and with deaths as weights -

Iterations finished in: 38 steps
Warning messages:
1: A total of 1160 0/NA central mortality rates are re-estimated by the ”interpolate” method.
2: In elca.rh(rfp.cmi, age = 50:100, int = T, dec = 3, verb = F) :

10Observe that the max.age feature is not implemented in the current version of the elca.rh function.

29



There are 152 cells with 0/NA exposures, which are ignored in the current analysis.
Try reducing the fitted age range.
Alternatively, fit ELC model with error= ”gaussian” .

The corresponding model summary output is provided by writing:

> mod6e
———————————————————————

Extended Lee-Carter Regression:
Fitted Model: LC(g) = a(x)+a(g)+b(x)*k(t)

——————————————————————–
Call: elca.rh(dat = rfp.cmi, age = 50:100, dec.conv = 3, interpolate = T,

verbose = F)
Error Structure: poisson
Data Source: CMI : male over

calendar years: (1983 - 2003) , ages: (50 - 100)
and groups: base a b c d

Deviance convergence in: 38 iterations
dev dev.c df df.c

1 Mean deviance base 264.316 df base 3648
2 Mean deviance total 202.249 df tot 4845

50 60 70 80 90 100

−5
−4

−3
−2

−1
0

1

Age

ax
 (g

)

Main effects

Xbase (0)
Xa  (0.5)
Xb  (1.17)
Xc  (−0.73)
Xd  (2.52)

 − X1

50 60 70 80 90 100

0.
00

0.
05

0.
10

0.
15

Age

bx

Interaction effects

Calendar year

kt
 (p

oi
ss

on
)

1985 1990 1995 2000

−1
5

−1
0

−5
0

5
10

15

Period effects

Adjusted LC Regression for CMI : male

Figure 9: SLC regression parameters for artificially stratified CMI male pensioners (lives) for
age range 50 – 100 over the observation period of 1983 – 2003.
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Also, we can print out the fitted parameter values of the additive effect as:

> coef(mod6e)

ax ax.c bx.c kt kt.c ag ag.c
1 50 -4.033 0.164 1983 16.162 base 0
2 51 -4.319 0.044 1984 11.457 a 0.496
3 52 -4.801 0.022 1985 13.075 b 1.17
4 53 -4.896 0.030 1986 10.106 c -0.735
...

We note that the fitting algorithm converges fairly quickly, in just 38 iterations, when
using the precision of dec.conv=3 and estimates the parameters of the additional effect
(see values in column ag.c) close to the simulated Poisson means (i.e. rfp=c(0.5, 1.2, -0.7,
2.5)). Also, considering the extent of noise imposed on the base CMI data (see Figure 2),
the remaining parameter estimates are overall similar to the coefficients of the standard
LC (lca.rh) fit with Poisson error structure (mod6), as it can be seen in the corresponding
interaction and period effects shown in the plots of Figures 3 and 9. Based on empirical trials
carried out on actual mortality data, we can report that the parameters of the bilinear term,
practically, remain the same after adding an observed additional effect (αg) to the model.

Once we allow for the stratification of the main effect parameter, forecasting in the SLC
modelling framework can proceed along the same method applied in the traditional LC
approach (see section 2.5). In the current ilc package, there are no specialized methods to
produce predictions directly, but we can still make use of the demography package forecast.lca
functions to produce forecasted trend parameter (κt). Then, we can make use of an adapted
version of the fle.plot method to illustrate the corresponding future life expectancy differenti-
ated by the additional effect using the following commands:

> mod6ef <− forecast.lca(mod6e, h=20, level=90, jump=’fit’, shift=F)
> plot(mod6ef$kt, ylab=’kt’, xlab=’Year’)
> matfle.plot(mod6e$lca, mod6, at=60, label=’RFP CMI’, h=20)

Thus, Figure 10 illustrates the resulting plots of predicted trend parameter (panel a)) and
the future life expectancy at age 60 over a 20 year period (panel b)).
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Forecasts from Random walk with drift
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Figure 10: Illustration of forecast result over a 20 years period in the SLC modelling
framework:a) future trend parameter and b) future life expectancy at age 60.

Acknowledgments

Financial support for the development of the current statistical program in R from the CMI and

from Lucida Plc is gratefully acknowledged. A special thanks goes to our colleague Arthur Renshaw

for providing the original source code in GLIM of the iterative fitting technique for the generalised

LC models. Also the authors are grateful to the CMI for releasing the mortality data.

32



References

Booth, H. (2006). Demographic forecasting: 1980 to 2005 in review. International Journal of
Forecasting, 22(3):547–581.

Booth, H., Hyndman, R. J., Tickle, L., and de Jong, P. (2006). Lee–Carter mortality
forecasting: A multi–country comparison of variants and extensions. 15(Article 9):289–310.

Brouhns, N., Denuit, M., and Vermunt, J. (2002). A Poisson log–bilinear regression approach
to the construction of projected life tables. 31:373–393.

Gutterman, S. and Vanderhoof, I. (1998). Forecasting changes in mortality. 2(4):135–138.

Haberman, S. and Renshaw, A. E. (2009). On age–period–cohort parametric mortality rate
projections. 45(2):255–270.

Lee, L. (2000). The Lee–Carter method for forecasting mortality, with various extensions
and applications. 4:80–93.

Lee, R. and Carter, L. (1992). Modelling and forecasting U.S. mortality. 87:659–671.

Lee, R. and Nault, F. (1993). Modeling and forecasting provincial mortality in Canada.
Paper presented at the World Congress of International Union for the Scientific Study of
Population, Montreal. Unpublished.

Li, N. and Lee, R. D. (2005). Coherent mortality forecasts for a group of populations: an
extension of the Lee–Carter method. 42(3):575–594.

Renshaw, A. E. and Haberman, S. (2003a). Lee–Carter mortality forecasting: A parallel
generalized linear modelling approach for England and Wales mortality projections. C,
52(1):119–137.

Renshaw, A. E. and Haberman, S. (2003b). Lee–Carter mortality forecasting with age specific
enhancement. 33:255–272.

Renshaw, A. E. and Haberman, S. (2006). A cohort-based extension to the Lee–Carter model
for mortality reduction factors. 38:556–570.

Renshaw, A. E. and Haberman, S. (2008). On simulation–based approaches to risk measure-
ment in mortality with specific reference to Poisson Lee–Carter modelling. 42(2):797–816.

Tabeau, E. (2001). A review of demographic forecasting models for mortality. In Tabeau, E.,
Van Den Berg Jeths, A., and Heathcote, C., editors, Forecasting mortality in developed
countries: insights from a statistical, demographic and epidemiological perspective, pages
1–32. Dordrecht:.

Thatcher, A. R. (1999). The long–term pattern of adult mortality and the highest attained
age. A, 162:5–30.

Venables, W. N., Smith, D. M., and the R Development Core Team (2005). An introduction
to R. Notes on R: A programming environment for data analysis and graphics. Version

33



2.1.1 (2005-06-20). ISBN 3–900051–12–7.

Wilmoth, J. (1993). Computational methods for fitting and extrapolating the Lee–Carter
model of mortality change. Technical report, Berkeley: Department of Demography,
University of California.

34


	Introduction
	Modelling Framework
	Mortality Data
	Basic Age-Period (AP) LC Model
	Generalized Family of LC Models
	Stratified (or Extended) LC Model
	Forecasting Approach

	Fitting Methodology
	Updating cycle of the base LC fitting
	Updating cycle of APC fitting
	Updating cycle of SLC fitting

	Application of the Generalized LC Models in R with ilc
	Preparing the Mortality Data for Analysis
	Fitting the Mortality Models and Making Forecasts
	Analysis of the Generalised LC Model Structures
	Analysis of the Stratified LC Model



