R/Interplot_default.R

Defines functions interplot.default

Documented in interplot.default

if(getRversion() >= "2.15.1") utils::globalVariables(c(".", "X.weights.", "ks_diff", "ks.test"))

#' Plot Conditional Coefficients in (Generalized) Linear Models with Interaction Terms
#' 
#' \code{interplot.default} is a method to calculate conditional coefficient estimates from the results of (generalized) linear regression models with interaction terms. 
#' 
#' @param m A model object including an interaction term, or, alternately, a data frame recording conditional coefficients.
#' @param var1 The name (as a string) of the variable of interest in the interaction term; its conditional coefficient estimates will be plotted.
#' @param var2 The name (as a string) of the other variable in the interaction term.
#' @param plot A logical value indicating whether the output is a plot or a dataframe including the conditional coefficient estimates of var1, their upper and lower bounds, and the corresponding values of var2.
#' @param steps Desired length of the sequence. A non-negative number, which for seq and seq.int will be rounded up if fractional. The default is 100 or the unique categories in the \code{var2} (when it is less than 100. Also see \code{\link{unique}}).
#' @param ci A numeric value defining the confidence intervals. The default value is 95\% (0.95).
#' @param adjCI A logical value indication if applying the adjustment of confidence intervals to control the false discovery rate following the Esarey and Sumner (2017) procedure. (See also Benjamini and Hochberg 1995.) The default is FALSE; the plot presents the confidence intervals suggested by Brambor, Clark, and Golder (2006). 
#' @param hist A logical value indicating if there is a histogram of `var2` added at the bottom of the conditional effect plot.
#' @param var2_dt A numerical value indicating the frequency distribution of `var2`. It is only used when `hist == TRUE`. When the object is a model, the default is the distribution of `var2` of the model. 
#' @param predPro A logical value with default of `FALSE`. When the `m` is an object of class `glm` and the argument is set to `TRUE`, the function will plot predicted probabilities at the values given by `var2_vals`. 
#' @param var2_vals A numerical value indicating the values the predicted probabilities are estimated, when `predPro` is `TRUE`. 
#' @param point A logical value determining the format of plot. By default, the function produces a line plot when var2 takes on ten or more distinct values and a point (dot-and-whisker) plot otherwise; option TRUE forces a point plot.
#' @param sims Number of independent simulation draws used to calculate upper and lower bounds of coefficient estimates: lower values run faster; higher values produce smoother curves.
#' @param xmin A numerical value indicating the minimum value shown of x shown in the graph. Rarely used.
#' @param xmax A numerical value indicating the maximum value shown of x shown in the graph. Rarely used.
#' @param ercolor A character value indicating the outline color of the whisker or ribbon.
#' @param esize A numerical value indicating the size of the whisker or ribbon.
#' @param ralpha A numerical value indicating the transparency of the ribbon.
#' @param rfill A character value indicating the filling color of the ribbon.
#' @param stats_cp A character value indicating what statistics to present as the plot note. Three options are available: "none", "ci", and "ks". The default is "none". See the Details for more information.
#' @param txt_caption A character string to add a note for the plot, a value will sending to \code{ggplot2::labs(caption = txt_caption))}.
#' @param facet_labs An optional character vector of facet labels to be used when plotting an interaction with a factor variable.
#' @param ... Other ggplot aesthetics arguments for points in the dot-whisker plot or lines in the line-ribbon plots. Not currently used.
#' 
#' @details \code{interplot.default} is a S3 method from the \code{interplot}. It works on two classes of objects:
#' \itemize{
#'   \item Ordinary linear models (object class: \code{lm});
#'   \item Generalized linear models (object class: \code{glm}).
#'   }
#' 
#' Because the output function is based on \code{\link[ggplot2]{ggplot}}, any additional arguments and layers supported by \code{ggplot2} can be added with the \code{+}. 
#' 
#' \code{interplot} visualizes the conditional effect based on simulated marginal effects. The simulation provides a probabilistic distribution of moderation effect of the conditioning variable (\code{var2}) at every preset values (including the minimum and maximum values) of the conditioned variable (\code{var1}), denoted as Emin and Emax. This output allows the function to further examine the conditional effect statistically in two ways. One is to examine if the distribution of \eqn{Emax - Emin} covers zero. The other is to directly compare Emin and Emax through statistical tools for distributional comparisons. Users can choose either method by setting the argument \code{stats_cp} to "ci" or "ks".
#' \itemize{
#'   \item "ci" provides the confidence interval of the difference of \eqn{Emax - Emin}. An interval including 0 suggests no statistical difference before and after the conditional effect is applied, and vise versa.
#'   \item "ks" presents the result of a two-sample Kolmogorov-Smirnov test of the simulated distributions of Emin and Emax. The output includes a D statistics and a p-value of the null hypothesis that the two distributions come from the same distribution at the 0.05 level.
#' }
#' 
#' See an illustration in the package vignette.
#' 
#' @return The function returns a \code{ggplot} object.
#' 
#' @importFrom arm sim
#' @importFrom stats quantile
#' @importFrom stats qnorm
#' @importFrom stats median
#' @importFrom stats plogis
#' @importFrom stats model.matrix
#' @importFrom purrr map
#' @importFrom interactionTest fdrInteraction
#' @import  ggplot2
#' @import  dplyr
#' 
#' @source Benjamini, Yoav, and Yosef Hochberg. 1995. "Controlling the False
#' Discovery Rate: A Practical and Powerful Approach to Multiple Testing".
#' Journal of the Royal Statistical Society, Series B 57(1): 289--300.
#'
#' Brambor, Thomas, William Roberts Clark, and Matt Golder.
#' "Understanding interaction models: Improving empirical analyses". Political
#' Analysis 14.1 (2006): 63-82.
#'
#' Esarey, Justin, and Jane Lawrence Sumner. 2015. "Marginal Effects in
#' Interaction Models: Determining and Controlling the False Positive Rate".
#' URL: \url{http://jee3.web.rice.edu/interaction-overconfidence.pdf}.
#' 
#' @export


# S3 method for class 'lm' and 'glm'
interplot.default <- function(m, var1, var2, plot = TRUE, steps = NULL, ci = .95, adjCI = FALSE, hist = FALSE, var2_dt = NA, predPro = FALSE, var2_vals = NULL, point = FALSE, sims = 1000, xmin = NA, xmax = NA, ercolor = NA, esize = 0.5, ralpha = 0.5, rfill = "grey70", stats_cp = "none", txt_caption = NULL, facet_labs = NULL, ...) {
    
    m.class <- class(m)
    m.sims <- arm::sim(m, sims)
    
    if(predPro == TRUE & all(m.class == "lm")) stop("Predicted probability is estimated only for general linear models.")
    
    ## For factor base terms####
    factor_v1 <- factor_v2 <- FALSE
    
    if (is.factor(eval(parse(text = paste0("m$model$", var1)))) & is.factor(eval(parse(text = paste0("m$model$", var2))))) 
        stop("The function does not support interactions between two factors.")
    
    
    if (is.factor(eval(parse(text = paste0("m$model$", var1))))) {
        var1_bk <- var1
        var1 <- paste0(var1, eval(parse(text = paste0("m$xlevel$", var1))))
        factor_v1 <- TRUE
        ifelse(var1 == var2, var12 <- paste0("I(", var1, "^2)"), var12 <- paste0(var2, 
            ":", var1)[-1])
        
        # the first category is censored to avoid multicolinarity
        for (i in seq(var12)) {
            if (!var12[i] %in% names(m$coef)) 
                var12[i] <- paste0(var1, ":", var2)[-1][i]
            if (!var12[i] %in% names(m$coef)) 
                stop(paste("Model does not include the interaction of", 
                  var1, "and", var2, "."))
        }
        
    } else if (is.factor(eval(parse(text = paste0("m$model$", var2))))) {
        var2_bk <- var2
        var2 <- paste0(var2, eval(parse(text = paste0("m$xlevel$", var2))))
        factor_v2 <- TRUE
        ifelse(var1 == var2, var12 <- paste0("I(", var1, "^2)"), var12 <- paste0(var2, 
            ":", var1)[-1])
        
        # the first category is censored to avoid multicolinarity
        for (i in seq(var12)) {
            if (!var12[i] %in% names(m$coef)) 
                var12[i] <- paste0(var1, ":", var2)[-1][i]
            if (!var12[i] %in% names(m$coef)) 
                stop(paste("Model does not include the interaction of", 
                  var1, "and", var2, "."))
        }
        
    } else {
        ifelse(var1 == var2, var12 <- paste0("I(", var1, "^2)"), var12 <- paste0(var2, 
            ":", var1))
        
        # the first category is censored to avoid multicolinarity
        for (i in seq(var12)) {
            if (!var12[i] %in% names(m$coef)) 
                var12[i] <- paste0(var1, ":", var2)[i]
            if (!var12[i] %in% names(m$coef)) 
                stop(paste("Model does not include the interaction of", 
                  var1, "and", var2, "."))
        }
    }
    
    ################### 
    
    if (factor_v2) {
        xmin <- 0
        xmax <- 1
        steps <- 2
    } else {
        if (is.na(xmin)) 
            xmin <- min(m$model[var2], na.rm = T)
        if (is.na(xmax)) 
            xmax <- max(m$model[var2], na.rm = T)
        
        if (is.null(steps)) {
            steps <- eval(parse(text = paste0("length(unique(na.omit(m$model$", 
                var2, ")))")))
        }
        
        
        if (steps > 100) 
            steps <- 100  # avoid redundant calculation
    }
    
    coef <- data.frame(fake = seq(xmin, xmax, length.out = steps), coef1 = NA, 
        ub = NA, lb = NA)
    coef_df <- data.frame(fake = numeric(0), coef1 = numeric(0), ub = numeric(0), 
        lb = numeric(0), model = character(0))
    
    
    if (factor_v1) {
      
      if(predPro == TRUE) stop("The current version does not support estimating predicted probabilities for factor base terms.")
      
        for (j in 1:(length(eval(parse(text = paste0("m$xlevel$", var1_bk)))) - 
            1)) {
            # only n - 1 interactions; one category is avoided against
            # multicolinarity
            
            for (i in 1:steps) {
                coef$coef1[i] <- mean(m.sims@coef[, match(var1[j + 1], 
                  names(m$coef))] + coef$fake[i] * m.sims@coef[, match(var12[j], 
                  names(m$coef))])
                coef$ub[i] <- quantile(m.sims@coef[, match(var1[j + 1], 
                  names(m$coef))] + coef$fake[i] * m.sims@coef[, match(var12[j], 
                  names(m$coef))], 1 - (1 - ci) / 2)
                coef$lb[i] <- quantile(m.sims@coef[, match(var1[j + 1], 
                  names(m$coef))] + coef$fake[i] * m.sims@coef[, match(var12[j], 
                  names(m$coef))], (1 - ci) / 2)
            }
          
          # Need working more for factor  
          # min_sim <- m.sims@coef[, match(var1[j + 1], names(m$coef))] + xmin * m.sims@coef[, match(var12[j], names(m$coef))] # simulation of the value at the minimum value of the conditioning variable
          # max_sim <- m.sims@coef[, match(var1[j + 1], names(m$coef))] + xmax * m.sims@coef[, match(var12[j], names(m$coef))] # simulation of the value at the maximum value of the conditioning variable
          # diff <- max_sim - min_sim # calculating the difference
          # ci_diff <- list()
          # ci_diff[[j]] <- c(
          #   quantile(diff, (1 - ci) / 2),
          #   quantile(diff, 1 - (1 - ci) / 2)
          # ) # confidence intervals of the difference
          
          
          if(adjCI == TRUE){
            ## FDR correction
            coef$sd <- (coef$ub - coef$coef1) / qnorm(1 - (1 - ci)/2) 
            tAdj <- fdrInteraction(coef$coef1, coef$sd, df = m$df, level = .95) # calculate critical t
            coef$ub <- coef$coef1 + tAdj * coef$sd
            coef$lb <- coef$coef1 - tAdj * coef$sd
          }
          
          # preparing for later plotting
          if (plot == TRUE) {
                coef$value <- var1[j + 1]
                coef_df <- rbind(coef_df, coef)
                if (hist == TRUE) {
                  if (is.na(var2_dt)) {
                    var2_dt <- eval(parse(text = paste0("m$model$", var2)))
                  } 
                  else {
                    var2_dt <- var2_dt
                  }
                }
            } 
        }
      
      if(plot == TRUE){
        if (is.null(facet_labs)) facet_labs <- unique(coef_df$value)
        coef_df$value <- factor(coef_df$value, labels = facet_labs)
        interplot.plot(m = coef_df, hist = hist, var2_dt = var2_dt, steps = steps, point = point, ercolor = ercolor, esize = esize, ralpha = ralpha, rfill = rfill, ci_diff = ci_diff, ks_diff = ks_diff, stats_cp = stats_cp, txt_caption = txt_caption, ...) + facet_grid(. ~ value)
      } 
      else { # return coef not coef_df, since the categorical part doesn't need to be shown
                names(coef) <- c(var2, "coef", "ub", "lb")
                return(coef)
            }
      
    } else if (factor_v2) {
      
      if(predPro == TRUE) stop("The current version does not support estimating predicted probabilities for factor base terms.")
      
        for (j in 1:(length(eval(parse(text = paste0("m$xlevel$", var2_bk)))) - 
            1)) {
            # only n - 1 interactions; one category is avoided against
            # multicolinarity
            
            for (i in 1:steps) {
                coef$coef1[i] <- mean(m.sims@coef[, match(var1, names(m$coef))] + 
                  coef$fake[i] * m.sims@coef[, match(var12[j], names(m$coef))])
                coef$ub[i] <- quantile(m.sims@coef[, match(var1, names(m$coef))] + 
                  coef$fake[i] * m.sims@coef[, match(var12[j], names(m$coef))], 
                  1 - (1 - ci) / 2)
                coef$lb[i] <- quantile(m.sims@coef[, match(var1, names(m$coef))] + 
                  coef$fake[i] * m.sims@coef[, match(var12[j], names(m$coef))], 
                  (1 - ci) / 2)
            }
            
          # Need working more for factor  
          # min_sim <- m.sims@coef[, match(var1[j + 1], names(m$coef))] + xmin * m.sims@coef[, match(var12[j], names(m$coef))] # simulation of the value at the minimum value of the conditioning variable
          # max_sim <- m.sims@coef[, match(var1[j + 1], names(m$coef))] + xmax * m.sims@coef[, match(var12[j], names(m$coef))] # simulation of the value at the maximum value of the conditioning variable
          # diff <- max_sim - min_sim # calculating the difference
          # ci_diff <- list()
          # ci_diff[[j]] <- c(
          #   quantile(diff, (1 - ci) / 2),
          #   quantile(diff, 1 - (1 - ci) / 2)
          # ) # confidence intervals of the difference
          
          
            if(adjCI == TRUE){
              ## FDR correction
              coef$sd <- (coef$ub - coef$coef1) / qnorm(1 - (1 - ci)/2) 
              tAdj <- fdrInteraction(coef$coef1, coef$sd, df = m$df, level = .95) # calculate critical t
              coef$ub <- coef$coef1 + tAdj * coef$sd
              coef$lb <- coef$coef1 - tAdj * coef$sd
            }
          
            if (plot == TRUE) {
                coef$value <- var2[j + 1]
                coef_df <- rbind(coef_df, coef)
                if (hist == TRUE) {
                  if (is.na(var2_dt)) {
                    var2_dt <- eval(parse(text = paste0("m$model$", var2)))
                  } else {
                    var2_dt <- var2_dt
                  }
                }
                
            } 
        }
    
        if(plot == TRUE){
          if (is.null(facet_labs)) facet_labs <- unique(coef_df$value)
          coef_df$value <- factor(coef_df$value, labels = facet_labs)
          interplot.plot(m = coef_df, hist = hist, steps = steps, var2_dt = var2_dt, point = point, ercolor = ercolor, esize = esize, ralpha = ralpha, rfill = rfill, stats_cp = stats_cp, txt_caption = txt_caption, ci_diff = ci_diff, ks_diff = ks_diff, ...) + facet_grid(. ~ value)
        } 
      else {
          names(coef) <- c(var1, "coef", "ub", "lb")
          return(coef)
        }
        
    } else {
        
      if(predPro == TRUE){
        if(is.null(var2_vals)) stop("The predicted probabilities cannot be estimated without defining 'var2_vals'.")
        
        df <- data.frame(m$model)
        if(sum(grep("X.weights.", names(df))) != 0) df <- select(df, -X.weights.) # removed the weights
        df_temp <- select(df, 1) # save the dependent variable separately
        df <- df[-1] %>% # get ride of the dv in case it's a factor
          map(function(var){ 
            if(is.factor(var)){
              model.matrix(~ var - 1)[, -1] %>% 
                # get rid of the first (reference) group
                as.data.frame()
            }
            else{
              as.numeric(var) # in case the initial one is a "labelled" class
            }
          })
        
        
        for(i in seq(df)){ 
          # use for loop to avoid the difficulty of flatting list containing vectors and matrices
          if(!is.data.frame(df[[i]])){
            # keep track the var names
            namesUpdate <- c(names(df_temp), names(df)[[i]])
            df_temp <- cbind(df_temp, df[[i]])
            names(df_temp) <- namesUpdate
          }
          else{
            df_temp <- cbind(df_temp, df[[i]])
          }
        }
        
        df <- df_temp          
        
        
        if("polr" %in% class(m)){ #ordered logit does not have intercept in sim
          df <- df[, -1]
        }
        else{
          names(df)[1] <- "(Intercept)" # replace DV with intercept
          df$`(Intercept)` <- 1
        }
        
        if(var1 == var2){ # correct the name of squares
          names(df) <- sub("I\\.(.*)\\.2\\.", "I\\(\\1\\^2\\)", names(df))
        }
        
        iv_medians <- summarize_all(df, funs(median(., na.rm = TRUE))) 
        
        fake_data <- iv_medians[rep(1:nrow(iv_medians), each=steps*length(var2_vals)), ] 
        fake_data[[var1]] <- with(df, rep(seq(min(get(var1)), max(get(var1)), length.out=steps),
                                          steps=length(var2_vals)))
        fake_data[[var2]] <- rep(var2_vals, each=steps)
        fake_data[[var12]] <- fake_data[[var1]] * fake_data[[var2]]
        
        pp <- rowMeans(plogis(data.matrix(fake_data) %*% t(data.matrix(m.sims@coef))))
        row_quantiles <- function (x, probs) {
          naValue <- NA
          storage.mode(naValue) <- storage.mode(x)
          nrow <- nrow(x)
          q <- matrix(naValue, nrow = nrow, ncol = length(probs))
          if (nrow > 0L) {
            t <- quantile(x[1L, ], probs = probs)
            colnames(q) <- names(t)
            q[1L, ] <- t
            if (nrow >= 2L) {
              for (rr in 2:nrow) {
                q[rr, ] <- quantile(x[rr, ], probs = probs)
              }
            }
          }
          else {
            t <- quantile(0, probs = probs)
            colnames(q) <- names(t)
          }
          q <- drop(q)
          q
        }
        pp_bounds <- row_quantiles(plogis(data.matrix(fake_data) %*% t(data.matrix(m.sims@coef))), prob = c((1 - ci)/2, 1 - (1 - ci)/2))
        pp <- cbind(pp, pp_bounds)
        pp <- pp*100
        colnames(pp) <- c("coef1", "lb", "ub")
        pp <- cbind(fake_data[, c(var1, var2)], pp)
        
        
        pp[,var2] <- as.factor(pp[,var2])
        
        names(pp)[1] <- "fake"
        names(pp)[2] <- "value"
        
        coef <- pp
      } else{
        ## Correct marginal effect for quadratic terms
        multiplier <- if (var1 == var2) 
            2 else 1
        
        for (i in 1:steps) {
            coef$coef1[i] <- mean(m.sims@coef[, match(var1, names(m$coef))] + 
                multiplier * coef$fake[i] * m.sims@coef[, match(var12, 
                  names(m$coef))])
            coef$ub[i] <- quantile(m.sims@coef[, match(var1, names(m$coef))] + 
                multiplier * coef$fake[i] * m.sims@coef[, match(var12, 
                  names(m$coef))], 1 - (1 - ci) / 2)
            coef$lb[i] <- quantile(m.sims@coef[, match(var1, names(m$coef))] + 
                multiplier * coef$fake[i] * m.sims@coef[, match(var12, 
                  names(m$coef))], (1 - ci) / 2)
        }
      }
      
  
      multiplier <- if (var1 == var2) 
        2 else 1
      
      min_sim <- m.sims@coef[, match(var1, names(m$coef))] + multiplier * xmin * m.sims@coef[, match(var12, names(m$coef))] # simulation of the value at the minimum value of the conditioning variable
      max_sim <- m.sims@coef[, match(var1, names(m$coef))] + multiplier * xmax * m.sims@coef[, match(var12, names(m$coef))] # simulation of the value at the maximum value of the conditioning variable
      
      diff <- max_sim - min_sim # calculating the difference
      ci_diff <- c(
        quantile(diff, (1 - ci) / 2),
        quantile(diff, 1 - (1 - ci) / 2)
      ) # confidence intervals of the difference
      ks_diff <- ks.test(min_sim, max_sim)
      
      
      if(adjCI == TRUE){
        ## FDR correction
        coef$sd <- (coef$ub - coef$coef1) / qnorm(1 - (1 - ci)/2) 
        tAdj <- fdrInteraction(coef$coef1, coef$sd, df = m$df, level = .95) # calculate critical t
        coef$ub <- coef$coef1 + tAdj * coef$sd
        coef$lb <- coef$coef1 - tAdj * coef$sd
      }
      
      
      if (plot == TRUE) {
          if (hist == TRUE) {
              if (is.na(var2_dt)) {
                var2_dt <- eval(parse(text = paste0("m$model$", var2)))
              } else {
                var2_dt <- var2_dt
              }
          }
          interplot.plot(m = coef, steps = steps, hist = hist, var2_dt = var2_dt, predPro = predPro, var2_vals = var2_vals, point = point, ercolor = ercolor, esize = esize, ralpha = ralpha, rfill = rfill, stats_cp = stats_cp, txt_caption = txt_caption, ci_diff = ci_diff, ks_diff = ks_diff, ...)
      } else {
        if(predPro == TRUE){
          names(coef) <- c(var2, paste0("values_in_", var1), "coef", "ub", "lb")
        } else {
          names(coef) <- c(var2, "coef", "ub", "lb")
        }
        
        return(coef)
      }
    }
}

Try the interplot package in your browser

Any scripts or data that you put into this service are public.

interplot documentation built on Feb. 18, 2021, 9:06 a.m.