Nothing
# Model with non-linearities and interactions
y <- iris$Sepal.Length
Y <- as.matrix(iris[, c("Sepal.Length", "Sepal.Width")])
fit_y <- lm(y ~ poly(Petal.Width, degree = 2L) * Species, data = iris)
fit_Y <- lm(Y ~ poly(Petal.Width, degree = 2L) * Species, data = iris)
x <- c("Petal.Width", "Species")
J <- c(1L, 51L, 101L)
preds_y <- unname(predict(fit_y, iris))
preds_Y <- unname(predict(fit_Y, iris))
shap_y <- list(
kernelshap(fit_y, iris[J, x], bg_X = iris, verbose = FALSE),
permshap(fit_y, iris[J, x], bg_X = iris, verbose = FALSE)
)
shap_Y <- list(
kernelshap(fit_Y, iris[J, x], bg_X = iris, verbose = FALSE),
permshap(fit_Y, iris[J, x], bg_X = iris, verbose = FALSE)
)
test_that("Baseline equals average prediction on background data", {
for (i in 1:2) {
expect_equal(shap_Y[[i]]$baseline, unname(colMeans(Y)))
}
})
test_that("SHAP + baseline = prediction", {
for (i in 1:2) {
s <- shap_Y[[i]]
expect_equal(rowSums(s$S[[1L]]) + s$baseline[1L], preds_Y[J, 1L])
expect_equal(rowSums(s$S[[2L]]) + s$baseline[2L], preds_Y[J, 2L])
}
})
test_that("First dimension of multioutput model equals single output", {
for (i in 1:2) {
expect_equal(shap_Y[[i]]$baseline[1L], shap_y[[i]]$baseline)
expect_equal(shap_Y[[i]]$S[[1L]], shap_y[[i]]$S)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.