
xsample(): an R Function for Sampling Linear Inverse

Problems

Karel Van den Meersche

Universiteit Gent

Karline Soetaert

NIOZ Yerseke

Dick Van Oevelen

NIOZ Yerseke

Abstract

The R function xsample() uses Markov Chain Monte Carlo (MCMC) algorithms to uni-

formly sample the feasible region of constrained linear problems. It contains two hit-and-run

sampling algorithms, together with a “mirror” algorithm where an MCMC step reflects on the

inequality constraints.

Keywords: linear modeling, underdetermined systems, Markov chain, R.

1. Introduction

This vignette is based on a publication with the same title in Journal of Statistical Software (Van den

Meersche, Soetaert, and Van Oevelen 2009). It includes parts of the introduction and the method

section of that publication, omitting the examples. It may be updated and extended in the future

as the package develops. For now we refer to the publication for the most up-to-date and complete

documentation of the function xsample().

xsample() is an R function that instead of optimizing a linear problem, returns a sample set that has

a uniform or a truncated normal distribution bounded by a set of inequality constraints.

In linear programming and system theory, a linear model is conventionally written in matrix notation

as1 Ax = b+ε , with x a vector of unknowns, and ε an error vector. Additional equality and inequality

constraints can be present, leading to a general formulation:











Ax = b+ ε

Ex = f

Gx ≥ h

(1)

This kind of problems are usually overdetermined, meaning that there is no solution for which ε = 0.

They can then be solved with quadratic programming (Lawson and Hanson 1995) techniques, in which

case a norm of the error term ε = Ax−b is minimized, for example the sum of squares ∑ε2. This

is a constrained linear regression problem: parameters x are subject to the constraints Ex = F and

Gx ≥ h.

1notations: vectors and matrices are in bold; scalars in normal font. Vectors are indicated with a small letter; matrices

with capital letter. Indices between brackets indicate elements of vectors (as in a(i)) or matrices (as in A(i, j)). Rows or

columns of matrices are indicated as A(i,) (rows) or A(, j) (columns). Indices without brackets (q1, q2) indicate vectors that

are subsequent in a random walk.

2 Sampling Linear Inverse Problems

In many real-life applications with a general lack of data, the linear model (1) is underdetermined.

Some examples include metabolic flux analysis in systems biology (Edwards, Covert, and Palsson

2002), food web modeling (Vezina and Platt 1988), biogeochemical modeling of the oceans, and the

identification of food sources in a grazer’s diet using stable isotope data (Phillips and Gregg 2003).

Applications in other fields may be found as well.

We define the feasible region of linear problem (1), L, as the part of the parameter space that contains

all solutions of the reduced problem
{

Ex = f

Gx ≥ h
(2)

Algorithms that sample the feasible region of an underdetermined linear problem in a uniform way,

have already been described in the literature (Smith 1984). Here we introduce an R function that

includes these algorithms in addition to an algorithm developed by the authors, that is more stable

in high-dimensional situations. The implemented function returns a sample set that is uniformly

distributed over the feasible region of equation set (2) when A and b are lacking.

The model can also contain a number of linear equations Ax = b+ ε with an error ε in the data vector

b . In that case, the generated sample set is restricted to the feasible region defined by (2), but is not

uniformly distributed.

When equation (1) is underdetermined, there exist solutions for which ε = 0, i.e. the model Ax can

fit the data b exactly. Here, we assume that ε is normally distributed, i.e. ε ∼ N(0,s).

In the absence of inequality conditions, it is straightforward to construct a series of samples x for

which Ax−b = ε has the proposed distribution. However, when x is subject to inequality constraints

(Gx ≥ h), ε cannot be normally distributed.

Instead, a truncated normal distribution is proposed for x:

p(x) ∝ e−
1
2
(Ax−b)⊤W2(Ax−b) if x ∈ L ; p(x) = 0 if x /∈ L (3)

where the weight matrix W = diag(s−1). This formulation penalizes samples x when ||Ax−b|| in-

creases, and leads to a normal distribution of Ax−b ∼ N(0,s) when there are no constraints.

Equation (1) is overdetermined when there is no exact fit Ax = b. ε then represents a model error

term rather than uncertainties in the data:

p(x) ∝ e−
1
2

σ−2(Ax−b)⊤W2(Ax−b) if x ∈ L ; p(x) = 0 if x /∈ L (4)

Here the model standard deviation σ is a scalar parameter that is estimated together with the other

parameters x (Gelman, Carlin, Stern, and Rubin 2004). In the absence of inequality constraints, the

mean estimate of σ equals the standard deviation of the residuals of a weighted linear regression.

The R (R Development Core Team 2008) function xsample() is currently part of the limSolve pack-

age (Soetaert, Van den Meersche, and van Oevelen 2009), available under the GPL (General Public

License) from the Comprehensive R Archive Network (CRAN, http://CRAN.R-project.org/).

limSolve contains several tools for linear inverse modeling. Function xsample() takes the matrices

A, E, G and the vectors b, f, h as input, together with a vector of standard deviations for b and a

number of technical input parameters. In the next sections, the function and contained algorithms are

explained, and some examples are provided.

http://CRAN.R-project.org/

Karel Van den Meersche, Karline Soetaert, Dick Van Oevelen 3

2. Method

The xsample() function aims to produce a sample set of vectors x that fulfill a number of equality

constraints, and are confined by a number of inequality constraints. They are either uniformly dis-

tributed within their feasible region, or their distribution depends on the value of linear combinations

Ax. This is done in two steps: (1) eliminate the equality constraints Ex = f and (2) perform a random

walk on the reduced problem.

2.1. Step 1: Eliminate equality constraints

The elements x(i) of x are not linearly independent; they are coupled through the equations in Ex = f.

They are first linearly transformed to a vector q for which all elements q(i) are linearly independent.

If solutions exist for the equations in (2) and a vector x0 is a particular solution of Ex = f, then all

solutions x can be written as:

x = x0 +Zq (5)

Z is an orthonormal matrix, obtained from the QR-decomposition or singular value decomposition

of E (Press, Teukolsky, Vetterling, and Flannery 1992), and serves as a basis for the null space of E:

Z⊤Z = I and EZ = 0.

There are no equality constraints for the elements in q. Thus, the problem is reduced to:

{

A′q−b′ = ε

G′q−h′ ≥ 0
(6)

with A′ = AZ, b′ = Ap−b, G′ = GZ and h′ = Gx0 −h. In xsample(), a particular solution x0 of

Ex = f can either be provided as one of the input parameters or be calculated by xsample() as a

particular solution using the Least Squares with Equalities and Inequalities (LSEI) algorithm (Haskell

and Hanson 1981), available in the limSolve package as lsei().

Because p meets the inequality constraints Gp ≥ h, there is already one trivial solution of q: the null

vector 0. From this point, new points are sequentially sampled.

We want to know which distribution of q is necessary to obtain the targeted distribution of the sample

set x. If a vector x(q) is a function of q, the PDF (probability density function) of q is a product of

the PDF of x and the Jacobian determinant:

p(q) = p(x)||
∂x

∂q
|| (7)

In this case, as Z is orthonormal, the Jacobian is || ∂x
∂q
||= |Z|= 1. Therefore p(x) = p(q). This means

that if q is sampled uniformly, then x is too.

2.2. Step 2: Random walk

Markov chain Monte Carlo (MCMC)

What’s left to do, is to properly sample q. This can be done numerically using an MCMC random

walk. Especially for high-dimensional problems, this is more efficient than a grid-based approach.

The Metropolis algorithm (Roberts 1996) produces a series of samples whose distribution approaches

an underlying target distribution. In xsample(), new samples q2 are drawn randomly from a jump

4 Sampling Linear Inverse Problems

distribution with PDF j(.|q1) that only depends on the previously accepted point q1. The new sample

point q2 is either accepted or rejected based on the following criterion:

if r ≤
p(q2)

p(q1)
accept q2 else keep q1 (8)

with 0 < r ≤ 1 and p(·) the PDF of the target distribution. The only prerequisite for the sample

distribution to converge to the target distribution with PDF p(·), is that the jump distribution from

which a new sample is drawn, is symmetrical in the following sense: the probability to jump from q1

to q2, j(q2|q1), has to be the same as the probability to jump from q2 to q1, j(q1|q2). Three different

jump distributions are implemented and are discussed further below.

In absence of matrix A and vector b, the target distribution of q is uniform and thus:

if G′q2 ≥ h (
p(q2)

p(q1)
= 1 ⇒ accept q2 (9)

else p(q2) = 0 ⇒ reject q2

If A and b are present, combining equations (4), (6) and (7):

if G′q ≥ h p(q) ∝ e−
1
2

σ−2(A′q−b′)⊤W 2(A′q−b′) (10)

else p(q) = 0

The expression for fixed standard deviations is easily obtained from (3) by setting σ = 1 and W =
diag(s−1). Otherwise, σ is estimated from fitting of the unconstrained model Ax−b ∼ N(0,σ).

Sampling the feasible region

New samples in the MCMC are taken from a symmetric jump distribution. A major challenge is

to only sample points that fulfill the inequality constraints. Three algorithms that ensure this, are

discussed in the next paragraphs. As a consequence, the sample set of vectors q and the derived

sample set of vector x, has a distribution that is bounded by the inequality constraints.

In a euclidean space, every inequality constraint defines a boundary of the feasible subspace. Each

boundary can be considered a multidimensional plane (a hyperplane). One side of the hyperplane is

the feasible range, where the inequality is fulfilled. The other side of the hyperplane is non-feasible.

The hyperplanes are defined by the following set of equations:

G′
(,i)q−h′(i) = 0 ∀i (11)

Three jump algorithms for selecting new points q2 were implemented: Two hit-and-run algorithms

(Smith 1984): the random directions and coordinates directions algorithms and a novel mirror algo-

rithm that uses the inequality bounds as reflective planes. All three algorithms produce sample points

that fulfill all inequality constraints, and they fulfill the symmetry prerequisite for the metropolis al-

gorithm.

Random Directions Algorithm (rda)

The random directions algorithm (Smith 1984) consists of two steps: first a random direction is se-

lected by drawing and normalizing a randomly distributed vector. Starting point and direction define

Karel Van den Meersche, Karline Soetaert, Dick Van Oevelen 5

a line in solution space. Then the intersections of this line with the hyperplanes defined by the in-

equality constraints are determined. A new point is then sampled uniformly along the line segment

that fulfills all inequalities.

Coordinates Directions Algorithm (cda)

The only difference with the random directions algorithm, is that the coordinates directions algorithm

(Smith 1984) starts with selecting a direction along one of the coordinate axes. This leads to a simpler

formulation of the algorithm.

The mirror algorithm

The mirror algorithm was inspired by the reflections in mirrors and uses the inequality constraints as

reflecting planes. New samples are taken from a normal jump distribution with q1 as average and a

fixed standard deviation, called the jump length. With an increasing number of inequality constraints,

more and more samples from an unmodified normal distribution will be situated outside of the feasible

region and have to be rejected based on criterion (8). While this is a correct approach and the sample

distribution will also converge to the targeted distribution, it is inefficient because many points are

rejected. We propose an alternative sampling routine that uses the inequalities to ensure that every

newly sampled point is situated in the feasible region.

����

����

��

���α���η

� �
�
��
�h

(2
)≥

 �

�����+h(1)≥ �

��

Figure 1: MCMC jump with inequality constraints functioning as mirrors. See text for explanation.

6 Sampling Linear Inverse Problems

If q1 is a point for which the inequality constraints are fulfilled, a new point q2 can be sampled in the

following way: first q2−0 is sampled from a normal distribution in the unrestricted space, ignoring all

inequality constraints:

q2−0 = q1 +η (12)

with η drawn from a normal distribution with mean 0 and a fixed standard deviation. If q2−0 is in the

feasible range (all inequalities are met), q2−0 is accepted as a sample point q2 and evaluated in the

metropolis algorithm (8).

If some inequalities are violated (Figure 1), then the new point q2−0 is mirrored consecutively in the

hyperplanes representing the unmet inequalities: the line segment q1 → q2−0 crosses these hyper-

planes. For each hyperplane, a scalar α(i) can be calculated for which

(G′)(,i)(q1 +α(i)η)+h′(i) = 0 (13)

with η = q2−0 −q1. The hyperplane with the smallest non-negative α(i), call it α(s), is the hyperplane

that is crossed first by the line segment. q2−0 is mirrored around this hyperplane. If the new point

(q2−1 in Figure 1) still has unmet inequalities, a new set of α(i)’s is calculated from the line segment

between the new point and the intersection of the previous line segment and the first hyperplane, i.e.,

q1 +α(s)η . q2−1 is again reflected in the hyperplane with smallest non-negative α(i). This is repeated

until all inequalities are met. The resulting point q2 is in the feasible subspace and is accepted as a

new sample point.

In most cases, the directional algorithms and the mirror algorithm converge to the same distributional

result. However, we found that especially in high-dimensional problems, the mirror algorithm is still

able to move away from the initial particular solution when the directional algorithms fail to do so.

One possible explanation for this can be found in the initialisation of the MCMC with LSEI. LSEI

often returns a solution in a corner of the feasible region, at the intersection of inequality constraints.

0 200 400 600 800 1000

iterations

x i

Figure 2: A good random walk of a parameter xi, using xsample() with 1000 iterations.

Karel Van den Meersche, Karline Soetaert, Dick Van Oevelen 7

In some circomstances, the line segment used by a random directions algorithm has then length zero

and the algorithm fails to move away from the initial point.

In the mirror algorithm, η is drawn from a normal distribution with zero mean and a set of fixed

standard deviations, which we call the jump lengths of the Markov Chain. These jump lengths have

a significant influence on the efficiency of the mirror algorithm, as they define the distance covered

within the solution space in one iteration, but also the number of reflections in the solution bound-

aries. They can be set manually with the parameter jmp in xsample(). When sampling the feasible

region uniformly, a suitable jump length is often in the same order of magnitude as the ranges of the

unknowns.

When the default parameter setting jmp = NULL is used, a jump length is calculated internally, which

gives quick and suitable results in most cases. Sometimes, these internally calculated jump lengths

are too large, and the calculation time is too long. One can then turn to manually setting small jump

lengths and gradually increasing them, until all elements in x are properly sampled. This can be

checked by looking at the trace of the elements x(i), which need to have an obviously random pattern,

as illustrated in Figure 2.

Note that the hit-and-run algorithms rda and cda only work if G and H define a bounded feasible

region. In an open or half open space, these algorithms will generate error messages because they

draw from a uniform distribution confined by this feasible region.The mirror algorithm is not affected

by this problem because new samples are drawn from a normal distribution instead of a uniform

distribution.

References

Edwards JS, Covert M, Palsson B (2002). “Metabolic Modeling of Microbes: the Flux Balance

Approach.” Environmental Microbiology, 4(3), 133–140.

Gelman A, Carlin JB, Stern HS, Rubin DB (2004). Bayesian Data Analysis. 2nd edition. Chapman

& Hall, London.

Haskell KH, Hanson RJ (1981). “An Algorithm for Linear Least-Squares Problems with Equality and

Non-Negativity Constraints.” Mathematical Programming, 21(1), 98–118.

Lawson CL, Hanson RJ (1995). Solving Least Squares Problems. 3rd edition. SIAM.

Phillips DL, Gregg JW (2003). “Source Partitioning Using Stable Isotopes: Coping with Too Many

Sources.” Oecologia, 136(2), 261–269.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in Fortran: The

Art of Scientific Computing. Cambridge University Press.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.

R-project.org.

Roberts GO (1996). “Markov Chain Concepts Related to Sampling Algorithms.” In WR Gilks,

S Richardson, DJ Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, pp. 45–58. Chapman

and Hall.

http://www.R-project.org
http://www.R-project.org

8 Sampling Linear Inverse Problems

Smith RL (1984). “Efficient Monte-Carlo Procedures for Generating Points Uniformly Distributed

over Bounded Regions.” Operations Research, 32(6), 1296–1308.

Soetaert K, Van den Meersche K, van Oevelen D (2009). limSolve: Solving Linear Inverse Models.

R package version 1.4, URL http://CRAN.R-project.org/package=limSolve.

Van den Meersche K, Soetaert K, Van Oevelen D (2009). “xsample(): An R Function for Sampling

Linear Inverse Problems.” Journal of Statistical Software, Code Snippets, 30(1), 1–15. URL http:

//www.jstatsoft.org/v30/c01/.

Vezina AF, Platt T (1988). “Food Web Dynamics in the Ocean 1. Best-Estimates of Flow Networks

Using Inverse Methods.” Marine Ecology-Progress Series, 42(3), 269–287.

Affiliation:

Karline Soetaert, Karel Van den Meersche, Dick van Oevelen

Royal Netherlands Institute of Sea Research (NIOZ)

4401 NT Yerseke, Netherlands E-mail: karline.soetaert@nioz.nl

URL: http://www.nioz.nl

http://CRAN.R-project.org/package=limSolve
http://www.jstatsoft.org/v30/c01/
http://www.jstatsoft.org/v30/c01/
mailto:karline.soetaert@nioz.nl
http://www.nioz.nl

	Introduction
	Method
	Step 1: Eliminate equality constraints
	Step 2: Random walk
	Markov chain Monte Carlo (MCMC)
	Sampling the feasible region
	Random Directions Algorithm (rda)
	Coordinates Directions Algorithm (cda)
	The mirror algorithm

