R/ogrrre.r

Defines functions ogrrre

Documented in ogrrre

ogrrre<-function (formula, r, R, dpn, delt, k, data = NULL, na.action, 
    ...) 
{
    k <- as.matrix(k)
    k1 <- k[1L]
    ogrrrest <- function(formula, r, R, dpn, delt, k1, data = NULL, 
        na.action, ...) {
        cal <- match.call(expand.dots = FALSE)
        mat <- match(c("formula", "data", "na.action"), names(cal))
        cal <- cal[c(1L, mat)]
        cal[[1L]] <- as.name("model.frame")
        cal <- eval(cal)
        y <- model.response(cal)
        md <- attr(cal, "terms")
        x <- model.matrix(md, cal, contrasts)
        s <- t(x) %*% x
        xin <- solve(s)
        r <- as.matrix(r)
        RC <- matrix(R, NCOL(x))
        RR <- t(RC)
        if (is.matrix(R)) 
            RR <- R
        else RR <- RR
        if (length(dpn) == 1L) 
            shi <- dpn
        else if (is.matrix(dpn)) 
            shi <- dpn
        else shi <- diag(dpn)
        del <- delt
        de1 <- as.matrix(delt)
        I <- diag(NCOL(x))
        wk <- solve(I + k1 * s)
        bb <- xin %*% t(x) %*% y
        ev <- (t(y) %*% y - t(bb) %*% t(x) %*% y)/(NROW(x) - 
            NCOL(x))
        ev <- diag(ev)
        bk <- wk %*% (bb + solve(s) %*% t(RR) %*% solve(RR %*% 
            solve(s) %*% t(RR)) %*% (r - RR %*% bb))
ahat<-bk%*%t(bk)%*%solve(ev*xin+bk%*%t(bk))
ogrrres<-ahat%*%bb
        colnames(ogrrres) <- c("Estimate")
bkve<-as.vector(bk)
j<-0
sumsq<-0
for (j in 1:NROW(bkve))
{
sumsq=(bkve[j])^2+sumsq
}
cval<-sumsq
        dbd <- ev*(ahat%*%xin%*%t(ahat))
        Standard_error <- sqrt(diag(abs(dbd)))
        rdel <- matrix(delt, NROW(RR))
        lenr <- length(RR)
        dlpt <- diag(RR %*% xin %*% t(RR))
        if (lenr == ncol(RR)) 
            ilpt <- sqrt(solve(abs(dlpt)))
        else ilpt <- sqrt(solve(diag(abs(dlpt))))
        upt <- RR %*% ogrrres
        tb <- t(upt)
        t_statistic <- ((tb - t(rdel)) %*% ilpt)/sqrt(ev)
        tst <- t(2L * pt(-abs(t_statistic), df <- (NROW(x) - 
            NCOL(x))))
        pvalue <- c(tst, rep(NA, (NCOL(x) - NROW(RR))))
        dbd <-ev*(ahat%*%xin%*%t(ahat)) 
rval<-(1/cval)*bk%*%t(bk)
        mse1 <- cval^2*ev*tr(ev*rval*solve(ev*xin+cval*rval)%*%xin%*%solve(ev*xin+cval*rval)%*%rval)+ev^2*t(bk)%*%solve(ev*I+cval*rval%*%s)%*%solve(ev*I+cval*rval%*%s)%*%bk
mse1<-as.vector(mse1)
        mse1 <- round(mse1, digits <- 4L)
        names(mse1) <- c("MSE")
        t_statistic <- c(t_statistic, rep(NA, (NCOL(x) - NROW(RR))))
        ans1 <- cbind(ogrrres, Standard_error, t_statistic, pvalue)
        ans <- round(ans1, digits <- 4L)
        anw <- list(`*****Ordinary Generalized Restricted Ridge Regression Estimator*****` = ans, 
            `*****Mean square error value*****` = mse1)
        return(anw)
    }
    npt <- ogrrrest(formula, r, R, dpn, delt, k1, data, na.action)
    plotogrrre <- function(formula, r, R, dpn, delt, k, data = NULL, 
        na.action, ...) {
        j <- 0
        arr <- 0
        for (j in 1:nrow(k)) {
            ogrrrem <- function(formula, r, R, dpn, delt, k, data, 
                na.action, ...) {
                cal <- match.call(expand.dots = FALSE)
                mat <- match(c("formula", "data", "na.action"), 
                  names(cal))
                cal <- cal[c(1L, mat)]
                cal[[1L]] <- as.name("model.frame")
                cal <- eval(cal)
                y <- model.response(cal)
                md <- attr(cal, "terms")
                x <- model.matrix(md, cal, contrasts)
                s <- t(x) %*% x
                xin <- solve(s)
                r <- as.matrix(r)
                RC <- matrix(R, NCOL(x))
                RR <- t(RC)
                if (is.matrix(R)) 
                  RR <- R
                else RR <- RR
                if (length(dpn) == 1L) 
                  shi <- dpn
                else if (is.matrix(dpn)) 
                  shi <- dpn
                else shi <- diag(dpn)
                del <- delt
                de1 <- as.matrix(delt)
                I <- diag(NCOL(x))
                bb <- xin %*% t(x) %*% y
                wk <- solve(I + k * s)
 bk <- wk %*% (bb + solve(s) %*% t(RR) %*% solve(RR %*% 
            solve(s) %*% t(RR)) %*% (r - RR %*% bb))
bkve<-as.vector(bk)
j<-0
sumsq<-0
for (j in 1:NROW(bkve))
{
sumsq=(bkve[j])^2+sumsq
}
cval<-sumsq
ev <- (t(y) %*% y - t(bb) %*% t(x) %*% y)/(NROW(x) - 
                  NCOL(x))
                ev <- diag(ev)
ahat<-bk%*%t(bk)%*%solve(ev*xin+bk%*%t(bk))
                dbd <- ev*(ahat%*%xin%*%t(ahat))
rval<-(1/cval)*bk%*%t(bk)
mse1 <-cval^2*ev*tr(ev*rval*solve(ev*xin+cval*rval)%*%xin%*%solve(ev*xin+cval*rval)%*%rval)+ev^2*t(bk)%*%solve(ev*I+cval*rval%*%s)%*%solve(ev*I+cval*rval%*%s)%*%bk
mse1<-as.vector(mse1) 
                return(mse1)
            }
            arr[j] <- ogrrrem(formula, r, R, dpn, delt, k[j], data, 
                na.action)
        }
        MSE <- arr
        Parameter <- k
        pvl <- cbind(Parameter, MSE)
        colnames(pvl) <- c("Parameter", "MSE")
        sval <- pvl
        return(sval)
    }
    prrre <- plotogrrre(formula, r, R, dpn, delt, k, data, na.action)
    if (nrow(k) > 1L) 
        val <- prrre
    else val <- npt
    val
}

Try the lrmest package in your browser

Any scripts or data that you put into this service are public.

lrmest documentation built on May 29, 2017, 9:02 a.m.