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Abstract

The madness package provides a class for automatic differentiation of
‘multivariate’ operations via forward accumulation. By ‘multivariate,’ we
mean the class computes the derivative of a vector or matrix or mul-
tidimensional array (or scalar) with respect to a scalar, vector, matrix,
or multidimensional array. The primary intended use of this class is to
support the multivariate delta method for performing inference on mul-
tidimensional quantities. Another use case is the automatic computation
of the gradient in parameter optimization (e.g., in the computation of
an MLE). Examples of the use of this package are given in the realm of
quantitative finance.

1 Introduction

The madness package [13] provides the ability to automatically compute and
accumulate the derivative of numerical quantities on concrete data via forward
accumulation. [14, 4] It can compute the derivatives of multivariate functions–
those producing multivariate output–with respect to a multivarite independent
variable. While the derivatives are essentially computed symbolically, they are
applied immediately to concrete data. Unlike previous attempts at automatic
differentiation in R, madness takes a ‘high level’ approach. [2, 1] That is, rather
than provide methods for computing the derivatives of a few basic operators
like sum, product, exponent and some trigonometrics, which would be applied
at the lowest level of more complicated functions, the eponymous madness class
supports functions like the Cholesky factor, the matrix square root, matrix in-
version, computing eigenvalues and so on. Because many of these linear algebra
operations are typically computed at the lowest level in C code, a ‘low level’ ap-
proach which infects basic operations like sum and product could not be easily
applied.

The target application is the multivariate delta method. Informally, the
multivariate delta method claims that a function commutes with a consistent
estimator of some population quantity, while the covariance gets ‘wrapped’ with
the derivative of the applied function. That is, if β is some population quantity,
and B is some consistent estimator of β with

√
n (B − β)

D−→ N (0,Ω) ,
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based on n independent observations, and f (·) is some function which is con-
tinuous and non-zero at β, then

√
n (f (B)− f (β))

D−→ N

0,
df (x)

dx

>
Ω

df (x)

dx

∣∣∣∣∣
x=β

 .

Practically speaking, this means that if you can compute a consistent estimator
(e.g., by taking a simple mean and relying on the central limit theorem), and
you can compute derivatives, you can estimate the variance-covariance of some
really weird estimators. The madness package aims to compute those derivatives
for you.

Nota bene The madness package is in a state of flux. This document describes
version 0.2.8, 0.2.7 of the package, but should be applicable for more recent
versions.

2 Basic usage

The madness class is an S4 class with the following slots:
� The dependent variable, val, a multidimensional numeric.
� The derivative of the dependent variable with respect to some implicit

independent variable, dvdx, a matrix. The matrix is stored in ‘numerator
layout,’ where the derivative of a scalar with respect to a vector is a row
vector. This is inconsistent with traditional representation of a gradient
as a column, but notationally more convenient.

� Optionally the ‘tag’ of the value, vtag is stored. This keeps track of the
operations applied to the value, and is useful for debugging.

� Optionally the ‘tag’ of the independent variable, xtag is stored. While
this tag is optional, it is important to note that two madness objects with
different xtag values cannot be used in the same computation. For exam-
ple, attempting to add them results in an error, since they are considered
to track the derivatives with respect to different independent variables.

� Optionally the variance-covariance of the independent variable is stored
in varx. This is convenient for the multivariate delta method. One can
call the vcov method on a madness object with a non-null varx, and the
delta method will be applied.

2.1 Object construction

One can get data into a madness object by calling the madness function. The
derivative dvdx will default to the identity matrix. That is, the constructor as-
sumes that the dependent variable is the independent variable. The constructor
also guesses the tags for the independent and dependent variables by the name
of the input variable. The show method shows a madness object, just showing
the head of the value and derivative:

require(madness)

set.seed(1234)

X_NAMED <- array(rnorm(3), dim = c(3, 1))

Xmad <- madness(X_NAMED)

show(Xmad)
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## class: madness

## d X_NAMED

## calc: -----------

## d X_NAMED

## val: -1.2 ...

## dvdx: 1 0 0 ...

## varx: ...

One can get the value, the derivative, tags, and so on with eponymous getter
methods, val, dvdx, xtag, vtag, varx:

show(val(Xmad))

## [,1]

## [1,] -1.21

## [2,] 0.28

## [3,] 1.08

show(dvdx(Xmad))

## [,1] [,2] [,3]

## [1,] 1 0 0

## [2,] 0 1 0

## [3,] 0 0 1

One can also construct a madness object via the as.madness function which
calls the coef method and the vcov method on the input. So, for example, one
can easily convert an object of class lm to a madness:

set.seed(456)

a_df <- data.frame(x = rnorm(1000), y = runif(1000),

z = runif(1000))

a_df$v <- rowSums(a_df) + rnorm(nrow(a_df))

beta <- lm(v ~ x + y + z, data = a_df)

bmad <- as.madness(beta, vtag = "beta")

show(bmad)

## class: madness

## d beta

## calc: --------

## d beta

## val: -0.035 ...

## dvdx: 1 0 0 0 ...

## varx: 0.0065 -2.9e-05 -0.0056 -0.0055 ...

There are also two functions which construct a madness object from data:
� twomoments, which computes the sample mean and covariance of n inde-

pendent observations of a p vector given in a n× p matrix.
� theta, which computes the uncentered second moment matrix of n inde-

pendent observations of a p vector given in a n× p matrix.
Both methods allow one to feed in a more ‘exotic’ variance-covariance estimator
than the default stats::vcov. More importantly, both methods properly take
into account the symmetry of the output. If one blindly stuffed a e.g., covariance
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matrix into a madness object, one could easily overestimate the variance of ones
estimate by effectively ignoring that any estimate has to be symmetric, and thus
diagonal-mirrored elements do not vary independently.

set.seed(789)

X <- matrix(rnorm(1000 * 3), ncol = 3)

# one of these apparently does not run under

# alternative BLAS, and so CRAN precludes me from

# executing this code in the vignette, but I

# cannot tell which because I cannot use those

# alternative BLAS, so I am commenting out this

# code, which is absurd. Xmad <- theta(X)

# show(Xmad)

# more 'exotic' variance-covariance:

library(sandwich)

set.seed(1111)

X <- matrix(rnorm(100 * 2), ncol = 2)

# twom <- twomoments(X,vcov=sandwich::vcovHAC)

# show(twom)

2.2 Methods

Obviously, to be of maximal use, the madness class should support any method
a reasonable user throws at it. Setting aside the definition of ‘reasonable,’ many
methods have been implemented for the madness class: unary minus; element-
wise binary sum, product, difference, ratio, power; matrix product and Kro-
necker product; accumulating sum and product; element-wise unary exponenti-
ation, logarithm, and trigonometrics; colSums, rowSums, colMeans, rowMeans;
matrix trace, determinant, matrix inverse, solve; Cholesky factor, symmetric
square root, and eigen; matrix norms; outer with a limited set of functions;
reshape operations; extracting lower, upper triangle, or diagonal; cbind, rbind
and concatenation; subselecting elements.

Since not every conceivable function can be implemented, there is a method,
numderiv which approximates derivatives numerically, producing a madness

object. While symbolically computed derivatives are typically preferred, nu-
merical approximations are preferred to an unusable half-solution. Indeed, the
numerical approximations are used in the unit tests to ensure the derivatives
are correctly computed. Moreover, the goal is to simplify the computation and
use of derivatives, which is not aided by a dogmatic adherence to symbolic
derivation.

Some example computations showing methods performed on madness ob-
jects:

set.seed(2223)

X <- matrix(runif(5 * 3), ncol = 3)

Y <- matrix(rnorm(length(X)), ncol = ncol(X))

Xmad <- madness(X, xtag = "v")

Ymad <- madness(Y, xtag = "v")
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Zmad <- Xmad + Ymad

# hadamard product:

Zmad <- Xmad * Ymad

# matrix product:

Zmad <- t(Xmad) %*% Ymad

# equivalently

Zmad <- crossprod(Xmad, Ymad)

# can also interact with a scalar:

Zmad <- Xmad + Y

Zmad <- t(Xmad) %*% Y

# and so on.

# not sure _why_ you want to do these, but they

# can be done:

foo <- Xmad^Ymad

foo <- log(Xmad)

foo <- outer(Xmad, Y, "+")

# some sums and such:

cboth <- c(colSums(Xmad), colSums(Ymad))

xsum <- sum(Xmad)

# square matrix operations:

Zmad <- crossprod(Xmad, Ymad)

foo <- matrix.trace(Zmad)

foo <- det(Zmad)

invZ <- solve(Zmad)

invZ <- solve(Zmad, crossprod(Y, Y))

# and so on...

3 Examples

We further illustrate the use of the madness class with real examples.

3.1 The Sharpe ratio

The Sharpe ratio is arguably the most popular metric for comparing the his-
torical (or backtested) performance of assets. It is, however, a sample statistic,
and represents a noisy estimate of some population parameter, which we will
call the signal-noise ratio. The asymptotic standard error of the Sharpe ratio
was given by Johnson and Welch, Jobson and Korkie, and others. [8, 7, 10]
This statistic, and its approximate standard error, can easily be computed with
a madness object, here applied to the Fama-French 3 factors weekly returns. [?
] The data were downloaded from French’s website, and comprise 4800 weeks
of data, from 1926-07-02 to 2018-06-29.

data(wff3)

wff3$Mkt_RF <- wff3$Mkt - wff3$RF

ff3 <- wff3[, c("Mkt_RF", "SMB", "HML")]
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# compute first and second moments: (beware: this

# method will not scale to larges numbers of

# assets!)

two <- twomoments(ff3, diag.only = TRUE)

# annualization factor:

ope <- 52

srs <- sqrt(ope) * two$mu/sqrt(two$sigmasq)

show(val(srs))

## [,1]

## [1,] 0.43

## [2,] 0.21

## [3,] 0.43

show(vcov(srs))

## [,1] [,2] [,3]

## [1,] 0.0111 0.00103 0.00194

## [2,] 0.0010 0.01084 -0.00039

## [3,] 0.0019 -0.00039 0.01029

# for comparison:

library(SharpeR)

show(sr_vcov(as.matrix(ff3), ope = ope))

## $SR

## [,1]

## Mkt_RF 0.43

## SMB 0.21

## HML 0.43

##

## $Ohat

## Mkt_RF SMB HML

## Mkt_RF 0.0111 0.00103 0.00194

## SMB 0.0010 0.01084 -0.00039

## HML 0.0019 -0.00039 0.01029

##

## $p

## [1] 3

In fact, here we have illustrated the computation of the Sharpe ratio of not
a single asset, but of three assets. We can perform tests of equality of the
signal-noise ratio of different assets. [9, 18]

# test whether SMB has same signal-noise as HML:

testv <- t(srs) %*% array(c(0, -1, 1), dim = c(3, 1))

# now the Wald statistic:

wald <- as.numeric(val(testv))/sqrt(diag(vcov(testv)))

show(wald)

## [1] 1.5

Here we demonstrate the computation of the Wald statistic: a quantity of
interest, typically assumed to be zero under the null hypothesis, divided by its
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approximate standard error. In this case the Wald statistic is nowhere near the
‘magical’ value of 2, and we have little reason to doubt the null hypothesis that
SMB and HML have the same signal-noise ratio.

3.1.1 Fighting overfit of the Sharpe ratio

The following recipe for quantitative strategy development is widely followed in
industry:

1. Write a piece of code which converts historical data to predicted returns
or target portfolio at point in time.

2. Backtest the code with all available historical data.
3. If the Sharpe ratio of the backtested returns is not satisfactory, add more

features to the trading strategy code, and repeat the backtest cycle.
4. When the backtested Sharpe ratio is high enough, productionalize the

model.
When presented in this way, one suspects such a practice would yield un-

satisfactory results1. Numerous tests have been devised to fight this kind of
‘data-snooping’ bias. [17, 6, 5]

Here we develop another approach to overfitting which models signal-noise
ratio in terms of the various attributes of the trading strategy being tested.
Formally, suppose that one records l ‘features’ about each strategy which has
been backtested. Let f i be the vector of features pertaining to the ith strat-
egy, for i = 1, 2, . . . , k. For example, suppose one is testing a moving average
crossover strategy. The features vector might be the lengths of the two averag-
ing windows. More elaborate strategies might have long feature vectors, with
information about lookback windows for features, which features are included,
how the predictive model was constructed, the form of the covariance estimator,
what instruments are hedged out, how portfolio optimization is performed, and
so on.

Letting ζi be the signal-noise ratio of this strategy, the simplest linear model
posits that ζi = f i

>β. When testing this model, one should take care to express
the features in such a way that would allow arbitrarily high signal-noise ratio
by extrapolating away from the tested feature set. This may require some
imagination.

One collects the backtested returns on the k strategies, then computes the
Sharpe ratio of these, along with the variance-covariance matrix of these. One
can then use linear regression to estimate β. By performing this calculation with
a madness object, one can compute the marginal Wald statistics associated with
each element of the feature vector. Here we present a simple example using
fake backtested returns. First imagine some process (hidden here) generates
the returns on 1771 of data over 400. Moreover, the returns are some linear
combination of 25 latent returns. The loadings on 5 of these are observed as the
features of the different strategies, including all those with non-zero signal-noise
ratio. The true β in this case is [0.2,−0.1, 0, 0, 0]

>
. Then proceed as follows:

show(dim(Rets))

1Actually, this depends on the background rate of profitable trading strategies. If one could
randomly stumble upon strategies with high signal-noise ratio, this recipe might be fruitful.
This is not commonly experienced, however.
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## [1] 1771 400

show(dim(F_mat))

## [1] 5 400

# use madness.

two <- twomoments(Rets, diag.only = TRUE)

srs <- two$mu/sqrt(two$sigmasq)

# the normal equations method. This is typically

# numerically unstable and not recommended, but I

# have not implemented QR factorization yet...

betahat <- solve(tcrossprod(F_mat, F_mat), F_mat %*%

srs)

show(val(t(betahat)))

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.17 -0.071 -0.012 -0.012 -0.012

marginal_wald <- val(betahat)/sqrt(diag(vcov(betahat)))

show(t(marginal_wald))

## [,1] [,2] [,3] [,4] [,5]

## [1,] 6.3 -2.5 -0.51 -0.44 -0.41

In this case, with 400 backtests of 1771 days of returns, the marginal Wald
statistics correctly identify the first two features as significantly non-zero.

3.2 The ex-factor Sharpe ratio

Loosely, the information ratio is the Sharpe ratio of returns in excess of some
non-constant benchmark. This assumes that the proper ‘beta’ of the investment
with respect to the benchmark is exactly one. A more pessimistic model of
the returns of an asset is essentially that of Arbitrage Pricing Theory, which
expresses the returns of an asset as the linear combination of the returns of
some common risk factors. For the purposes of estimating whether an invest-
ment strategy has any idiosyncratic ‘alpha’, this is equivalent to regressing the
historical returns against the historical returns of the risk factors, and assessing
whether the intercept term is significantly non-zero.

Rather than perform a hypothesis test, we can perform inference on the
intercept term divided by the volatility, here given the unfortunate name of
ex-factor signal-noise ratio. The model is as follows:

xt = β01 +

l−1∑
i

βifi,t + εt, (1)

where xt is the return of the asset at time t, fi,t is the value of some ith ‘factor’ at
time t, and the innovations, ε, are assumed to be zero mean, and have standard
deviation σ. Here we have forced the zeroth factor to be the constant one,
f0,t = 1.

Given n observations, let F be the n× l matrix whose rows are the observa-
tions of the factors (including a column that is the constant 1), and let x be the
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n length column vector of returns; then the multiple linear regression estimates
are

β̂ =df

(
F>F

)−1
F>x, σ̂ =df

√√√√(x− Fβ̂
)> (

x− Fβ̂
)

n− l
. (2)

We can then define a ex-factor Sharpe ratio as follows: let v be some non-zero
vector, and let r0 be some risk-free, or disastrous, rate of return. Then define

ζ̂g =df
β̂
>
v − r0
σ̂

. (3)

The ex-factor signal-noise ratio appears in a transform of the ‘theta’ matrix
which encompasses both first and second moments of a distribution. [12] Let

x̃i =df

[
xi,f i

>
]>
.

Define the second moment of this as

Θ =df E
[
x̃x̃>

]
.

First note that

Θ =

[
σ2 + β>Γfβ β>Γf

Γfβ Γf

]
, (4)

where Γf is the uncentered second moment of f . Simple matrix multiplication
confirms that the inverse of Θ is

Θ−1 =

[
σ−2 −β>σ−2
−βσ−2 Γf

−1 + σ−2ββ>

]
, (5)

and the Cholesky factor of that inverse is

Θ−1/2 =

[
σ−1 0

−βσ−1 Γf
−1/2

]
. (6)

The ex-factor signal-noise ratio (cf. Equation 3) can thus be expressed as

ζg =
β>v − r0

σ
= −

[
r0,v

>]Θ−1/2e1. (7)

Up to scaling by some factor of n and l, which becomes immaterial for large n,
the sample ex-factor Sharpe ratio takes the same form in the sample analogue.

We demonstrate this computation by grabbing the weekly simple returns of
AAPL and IBM, then attributing them to the Fama French three factor weekly
returns. We compute the ex-factor Sharpe ratio to test for idiosyncratic alpha
by computing the intercept term divided by the volatility. Because we estimate
the variance-covariance of the combined vector of returns, we can estimate the
variance-covariance of our estimates of the ex-factor signal-noise ratios together.
Again we stress that the hard work is in gathering the data together, putting
them in the right form, and sanely computing the estimate. The madness class
automatically computes the derivatives and the marginal Wald statistics are
trivial to compute. Here we apply this analysis to the weekly returns of AAPL and
of IBM, collected over 1930 weeks from 1981-01-09 to 2017-12-29, as downloaded
from Quandl. [15] We will perform attribution against the Fama-French factor
weekly returns considered earlier. The tail of the data looks as follows:
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data(wff3)

data(stock_returns)

allweekly <- stock_returns %>%

mutate(AAPL = 100 * AAPL, IBM = 100 * IBM) %>%

left_join(wff3, by = "Date") %>%

mutate(Mkt_RF = Mkt - RF) %>%

dplyr::select(-Mkt)

tail(allweekly, 6) %>%

dplyr::select(-RF) %>%

knitr::kable(row.names = FALSE)

Date AAPL IBM SMB HML Mkt RF

2017-11-24 2.79 1.91 1.11 -0.84 1.04

2017-12-01 -2.27 1.90 -0.90 2.22 1.61

2017-12-08 -0.99 0.03 -1.44 0.16 0.30

2017-12-15 2.68 -1.50 -0.24 -0.70 0.81

2017-12-22 0.60 0.00 0.79 0.48 0.54

2017-12-29 -3.36 0.60 0.01 -0.20 -0.37

We now perform the attributions and test them for significance:

tht <- theta(allweekly %>%

dplyr::select(AAPL, IBM, Mkt_RF, SMB, HML) %>%

mutate(one = 1), xtag = "stocks")

thinv_aapl <- chol(solve(tht[c(1, 3, 4, 5, 6), c(1,

3, 4, 5, 6)]))

thinv_ibm <- chol(solve(tht[c(2, 3, 4, 5, 6), c(2,

3, 4, 5, 6)]))

r0 <- 1e-04

v <- c(0, 0, 0, 1)

r0v <- array(c(r0, v), dim = c(5, 1))

exfacsr_aapl <- -(t(r0v) %*% t(thinv_aapl))[1, 1]

exfacsr_ibm <- -(t(r0v) %*% t(thinv_ibm))[1, 1]

exfacsr <- c(exfacsr_aapl, exfacsr_ibm)

show(cov2cor(vcov(exfacsr)))

## [,1] [,2]

## [1,] 1.00 0.12

## [2,] 0.12 1.00

waldboth <- val(exfacsr)/sqrt(diag(vcov(exfacsr)))

show(waldboth)

## [,1]

## [1,] 1.36

## [2,] 0.63

Here we conclude that the ex-factor signal-noise ratio of AAPL is greater than
the hurdle rate of 1 bp per week, but that of IBM is not. The correlation of the
errors of our estimates is estimated to be fairly small. We can also perform a
paired test for whether the ex-factor signal-noise ratio of AAPL is greater than
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that of IBM by taking the difference in our estimates, and trivially computing
the Wald statistic. In this case, the evidence does not strongly support that
AAPL has higher idiosyncratic alpha than IBM:

isbigger <- array(c(1, -1), dim = c(1, 2)) %*% exfacsr

show(val(isbigger)/sqrt(diag(vcov(isbigger))))

## [,1]

## [1,] 0.56

3.3 The Markowitz portfolio

The Markowitz portfolio is the unconstrained portfolio that maximizes the
signal-noise ratio. For a vector of returns of p assets, if the unconditional ex-
pected return is µ, and the covariance of returns is Σ, then the Markowitz
portfolio is

ν∗ =df λΣ−1µ, (8)

where λ is some positive constant chosen to respect a cap on portfolio volatility
(or leverage).

Since the population parameters µ and Σ are unknown, they must be esti-
mated from the data. The noisy estimates may be unreliable, and one may wish
to check the standard error around the portfolio weights. This can be found
under assumptions of normality, or by using the ‘theta’ matrix, but computing
directly via a madness object. [3, 12] Here we compute the Markowitz portfo-
lio on the 1930 weeks of weekly returns, from 1981-01-09 to 2017-12-29, of the
Fama-French three factor data and of AAPL and IBM discussed above2.

library(sandwich)

twom <- twomoments(allweekly %>%

select(AAPL, IBM, Mkt_RF, SMB, HML), vcov = sandwich::vcovHAC,

diag.only = FALSE)

the_mp <- solve(twom$Sigma, twom$mu)

show(val(t(the_mp)))

## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.0055 0.0039 0.021 0.016 0.065

show(vcov(the_mp))

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.9e-05 -5.0e-06 -1.6e-05 -1.1e-06 1.2e-05

## [2,] -5.0e-06 7.4e-05 -5.7e-05 8.6e-06 1.5e-05

## [3,] -1.6e-05 -5.7e-05 2.1e-04 3.8e-05 5.4e-05

## [4,] -1.1e-06 8.6e-06 3.8e-05 3.7e-04 6.0e-05

## [5,] 1.2e-05 1.5e-05 5.4e-05 6.0e-05 4.5e-04

# let's normalize to unit gross leverage:

mp_norm <- outer(the_mp, norm(the_mp, "1"), "/")

dim(mp_norm) <- dim(the_mp)

show(val(t(mp_norm)))

2It should be recognized that one can not trade on the Fama French factors directly, that
there is a selection bias in our choice of stocks, and so on. This is just an example.
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## [,1] [,2] [,3] [,4] [,5]

## [1,] 0.049 0.035 0.19 0.14 0.58

show(cov2cor(vcov(mp_norm)))

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1.00 -0.1231 -0.27 -0.221 0.2390

## [2,] -0.12 1.0000 -0.56 -0.046 0.0057

## [3,] -0.27 -0.5597 1.00 -0.233 -0.2280

## [4,] -0.22 -0.0460 -0.23 1.000 -0.7949

## [5,] 0.24 0.0057 -0.23 -0.795 1.0000

More elaborate inference on the Markowitz portfolio is possible via the
‘theta’ matrix. Computation of theta requires one to choose ‘features’ for pre-
diction of returns–either constant one for the unconditional model, or some
time varying state variables for the linear conditional expectation model. [12]
Using the theta method requires one to bind the features to the returns. Here
we perform this computation on the two stocks and the Fama French weekly
returns.

library(sandwich)

tht <- theta(allweekly %>%

mutate(one = 1) %>%

select(one, AAPL, IBM, Mkt_RF, SMB, HML), xtag = "all5",

vcov = sandwich::vcovHAC)

Suppose that Θ is somehow known to be reduced rank. We can perform
inference on the Markowitz portfolio by computing the pseudoinverse of Θ̂ and
computing the sample Markowitz portfolio, performing inference on its elements.
[12] Here we show this calculation assuming that Θ is of rank 2.

rnk <- 2

ev <- eigen(tht, symmetric = TRUE)

evals <- ev$values[, 1:rnk]

evecs <- ev$vectors[, 1:rnk]

thtinv <- evecs %*% todiag(evals^-1) %*% t(evecs)

the_mp2 <- -thtinv[2:nrow(thtinv), 1]

show(val(t(the_mp2)))

## [,1] [,2] [,3] [,4] [,5]

## [1,] 3.8e-05 -6e-04 -0.00023 1.3e-05 2.5e-05

show(vcov(the_mp2))

## [,1] [,2] [,3] [,4] [,5]

## [1,] 5.1e-08 -1.2e-07 -4.5e-08 3.9e-09 3.4e-09

## [2,] -1.2e-07 3.6e-07 1.3e-07 -1.1e-08 -1.1e-08

## [3,] -4.5e-08 1.3e-07 4.9e-08 -4.0e-09 -4.1e-09

## [4,] 3.9e-09 -1.1e-08 -4.0e-09 4.2e-10 3.1e-10

## [5,] 3.4e-09 -1.1e-08 -4.1e-09 3.1e-10 5.1e-10

Comparing the Markowitz portfolio computed here to the one computed
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previously, we see that the weights for the Fama French factors are much smaller
in magnitude, while the weight for AAPL is relatively unchanged.

3.4 Correlation matrix

We can trivially use the covariance computed by twomoments to compute a
correlation matrix. Here we demonstrate this use on the Fama French three
factor weekly returns. We compute the Wald statistics of the three off-diagonal
correlations, finding that the correlation of weekly returns between MktRF and
SMB, and between returns between MktRF and HML is likely to be significantly
non-zero, while the correlation between SMB and HML is apparently very close to
zero:

library(sandwich)

data(wff3)

wff3$Mkt_RF <- wff3$Mkt - wff3$RF

ff3 <- wff3[, c("Mkt_RF", "SMB", "HML")]

# compute first and second moments:

two <- twomoments(ff3, vcov = sandwich::vcovHAC)

# basically cov2cor:

fcorr <- two$Sigma/tcrossprod(sqrt(diag(two$Sigma)))

show(val(fcorr))

## [,1] [,2] [,3]

## [1,] 1.000 0.086 0.188

## [2,] 0.086 1.000 -0.028

## [3,] 0.188 -0.028 1.000

# compute the Wald statistic of the off-diagonal

# correlations:

odiag <- vech(fcorr, -1)

wald <- val(odiag)/sqrt(diag(vcov(odiag)))

show(wald)

## [,1]

## [1,] 2.24

## [2,] 3.59

## [3,] -0.75

3.5 As an objective function

The madness class can be of some limited use when writing objective functions3.
For this purpose, the to objective method converts a madness object repre-
senting a scalar into a numerical value with a gradient attribute. Consider this
artificial example of a matrix factorization objective with a penalty for highly
negative elements:

3Automatic computation of the Hessian matrix would improve this area of functionality,
but it is not clear how this would interoperate with support for computing derivatives of
multivariate-valued functions.
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fitfun <- function(R, L, Y, nu = -0.1) {
Rmad <- madness(R)

dim(Rmad) <- c(ncol(L), ncol(Y))

Err <- Y - L %*% Rmad

penalty <- sum(exp(nu * Rmad))

fit <- norm(Err, "f") + penalty

# convert to an objective:

to_objective(fit)

}
set.seed(1234)

L <- array(runif(30 * 5), dim = c(30, 5))

Y <- array(runif(nrow(L) * 20), dim = c(nrow(L), 20))

R0 <- array(runif(ncol(L) * ncol(Y)), dim = c(ncol(L),

ncol(Y)))

Rk <- nlm(fitfun, R0, L, Y, iterlim = 30)

show(c(fitfun(R0, L, Y)))

## [1] 116

show(c(fitfun(Rk$estimate, L, Y)))

## [1] 105

4 Future Directions

To make this package more useful for the computation of objective functions, the
second derivative should also be computed and maintained during operations.
Moreover, use of higher-order derivatives could also be useful for application
of the delta method when the sample size is so small that estimators are seri-
ously biased. It is challenging to add this feature while keeping the ‘high-level’
approach to automatic differentiation, since the second derivative of matrix-to-
matrix operations like the Cholesky factorization are hard to code.
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