pred.strk1: Spatio-temporal regression kriging

Description Usage Arguments Value Author(s) References See Also Examples

Description

Function for spatio-temporal regression kriging prediction based on krigeST. The prediction is made for points given in data.frame.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
pred.strk1(obs, stations, newdata, zero.tol=0,
reg.coef=list(
tmean=c(-0.126504415,0.4051734447,0.4943247727,0.0001837527,-0.0189207588),
tmin = c(-0.9825601517,0.5672140021,0.3344561638, 0.0003119777,-0.0243629638),
tmax = c(1.7873573081,0.350228076, 0.5569091092, 0.0002571338,-0.0012988123)
)[['tmean']],
vgm.model=list(tmean=vgmST("sumMetric",
                                    space=vgm( 14.13, "Sph", 5903, 1.933),
                                    time =vgm(0, "Sph",  0.1, 0),
                                    joint=vgm(9.06, "Sph", 2054, 0.474),
                                    stAni=497.9),
                         tmin = vgmST("sumMetric",
                                    space=vgm( 22.682, "Sph", 5725, 3.695),
                                    time =vgm(0, "Sph",  0.1, 0),
                                    joint=vgm(9.457, "Sph",1888, 1.67),
                                    stAni=485),
                         tmax = vgmST("sumMetric",
                                    space=vgm( 8.31, "Sph", 4930, 2.872),
                                    time =vgm(0, "Sph",  0.1, 0),
                                    joint=vgm(11.175, "Sph", 2117, 1.75),
                                    stAni=527) ) [['tmean']] ,
computeVar=FALSE, out.remove=FALSE, threshold.res=15, returnList=FALSE)

Arguments

obs

data.frame; observations data frame contains station ID column, time column (day of observation), measured variable column and ovariates columns (in exactly that order). It can contain additional variables (columns).

stations

data.frame; Stations data frame contains at least station ID column, longitude (or x) and latitude (or y) column (in exactly that order).It can contain additional variables (columns).

newdata

data.frame; predictions data frame contains longitude (or x) and latitude (or y) column, time column (day of prediction) and covariates columns (in exactly that order)

zero.tol

distance values less than or equal to this threshold value locations are considered as duplicates, see rm.dupl, duplicates are removed to avoid singular covariance matrices in kriging.

reg.coef

linear regression coefficients; order is assumed as intercept, dynamic.cov, static.cov. Coefficients can be specified by user; depending on type, number and order of dynamic and static covariates. At the moment the function contains regression coefficient for mean, minimum and maximum temperature calculated globally for GSOD and ECA&D data set on geometrical temperature trend, MODIS LST-8 day, elevation and TWI, see regdata. Coefficients for mean temperature are defined by default.

vgm.model

spatio-temporal variogram of regression residuals, see vgmST. At the moment the function contains spatio-temporal variogram model on residuals for mean, minimum and maximum temperature calculated globally for GSOD and ECA&D data set. Regression residuals on geometrical temperature trend, MODIS LST-8 day, elevation and TWI, see regdata. Ranges are in km. Spatio-temporal variogram for mean temperatures is defined by default. User can specified own variogram model as vgmST object.

computeVar

if TRUE, just variance is computed

out.remove

if TRUE, potential outliers are removed. Removing procedure is iterative, all location with residual higher than defined threshold (treshold.res) are selected. Only location with highest cross validation residual is removed, than cross validation is done again, the procedure removing one by one location run until all locations have residuals under defined threshold.

threshold.res

critical threshold for removing potential outliers

returnList

if TRUE, result islist; if FALSE, result is data frame

Value

An list object containing:

pred

an object of SpatialPointsDataFrame-class with column contains prediction or variance

cv

cross validation information for points used in prediction, as object of STFDF-class

remst

removed locations as an object of Spatial-class, if out.remove=TRUE

remobs

removed locations with observations as an object of STFDF-class, if out.remove=TRUE

A data frame object contains longitude (or x) and latitude (or y) column, time column (day of prediction) and prediction value.

Author(s)

Aleksandar Sekulic [email protected], Milan Kilibarda [email protected]

References

Kilibarda, M., T. Hengl, G. B. M. Heuvelink, B. Graeler, E. Pebesma, M. Percec Tadic, and B. Bajat (2014), Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution, J. Geophys. Res. Atmos., 119, 2294-2313, doi:10.1002/2013JD020803.

See Also

regdata meteo2STFDF tgeom2STFDF

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
## prepare data
## load observation - data.frame of mean temperatures
data(dtempc) 
str(dtempc)
data(stations)
library(sp)
library(spacetime)
library(gstat)

#str(stations)
## lonmin,lonmax,lonmax, lonmin   latmin, latnmin,latmax,latmax
serbia= point.in.polygon(stations$lon, stations$lat, c(18,22.5,22.5,18), c(40,40,46,46))
st= stations[ serbia!=0, ]
## create STFDF
temp <- meteo2STFDF(dtempc,st)
rm(dtempc)
# str(temp)
## Adding CRS
temp@sp@proj4string <- CRS('+proj=longlat +datum=WGS84')

## load covariates for mean temperatures
data(regdata)
# str(regdata)
regdata@sp@proj4string <- CRS('+proj=longlat +datum=WGS84')

#creating newdata
pred <- data.frame(regdata@sp@coords[1:5,1],regdata@sp@coords[1:5,2], 
                  '2011-07-05', regdata@data$temp_geo[1:5], regdata@data$modis[1:5], 
                  regdata@sp@data$dem[1:5], regdata@sp@data$twi[1:5])
## pred names
names(pred)=c("x", "y", "time", "temp_geo", "modis", "dem", "twi")

#creating observation
gg <- regdata
time <- gg@time
gg@data$dem = rep(gg@sp@data[,1],length(time))
gg@data$twi = rep(gg@sp@data[,2],length(time))

temp_geo <- sapply(1:length(time),
                function(i) over(temp@sp,as(gg[,i,'temp_geo'],'SpatialPixelsDataFrame')))
modis <- sapply(1:length(time),
                function(i) over(temp@sp,as(gg[,i,'modis'],'SpatialPixelsDataFrame' ) ) )
dem <- sapply(1:length(time),
              function(i) over(temp@sp,as(gg[,i,'dem'],'SpatialPixelsDataFrame' ) ) )
twi <- sapply(1:length(time),
                function(i) over(temp@sp,as(gg[,i,'twi'],'SpatialPixelsDataFrame' ) ) )

temp_geo <- do.call('cbind',temp_geo)
temp_geo <- as.vector(temp_geo)
modis <- do.call('cbind',modis)
modis <- as.vector(modis)
dem <- do.call('cbind',dem)
dem <- as.vector(dem)
twi <- do.call('cbind',twi)
twi <- as.vector(twi)

t1 <- which(as.character(index(time[1])) == as.character( index(temp@time)) )
t2 <- which(as.character(index(time[ length(time) ])) == as.character(index(temp@time)) )

temp <- temp[,t1:t2, drop=FALSE]

temp$temp_geo = temp_geo
temp$modis = modis
temp$dem = dem
temp$twi = twi

obs = as.data.frame(temp)[,c(7,4,11,12,13,14,15)]

# Calculate prediction of points in pred data frame
# global model is used for regression and variogram
# load precalculated variograms
data(tvgms)
data(tregcoef)
res= pred.strk1(obs,st, newdata= pred, 
              reg.coef=tregcoef[[1]] ,vgm.model=tvgms[[1]], returnList=TRUE )

#str(res)

# res1= pred.strk1(obs,st, newdata= pred, reg.coef=tregcoef[[1]] ,vgm.model=tvgms[[1]], 
#               returnList=FALSE, out.remove=TRUE, threshold.res=15 )

# str(res1)

meteo documentation built on May 2, 2019, 3:29 p.m.