ResamplingHoldout: Holdout Resampling

Description Format Construction Fields Methods Parameters See Also Examples

Description

Splits data into a training set and a test set. Parameter ratio determines the ratio of observation going into the training set (default: 2/3).

Format

R6::R6Class inheriting from Resampling.

Construction

1
2
3
ResamplingHoldout$new()
mlr_resamplings$get("holdout")
rsmp("holdout")

Fields

See Resampling.

Methods

See Resampling.

Parameters

See Also

Dictionary of Resamplings: mlr_resamplings

as.data.table(mlr_resamplings) for a complete table of all (also dynamically created) Resampling implementations.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
# Create a task with 10 observations
task = tsk("iris")
task$filter(1:10)

# Instantiate Resampling
rho = rsmp("holdout", ratio = 0.5)
rho$instantiate(task)

# Individual sets:
rho$train_set(1)
rho$test_set(1)
intersect(rho$train_set(1), rho$test_set(1))

# Internal storage:
rho$instance # simple list

mlr3 documentation built on Oct. 30, 2019, 12:14 p.m.