tuning_spaces_rbv2 | R Documentation |
Tuning spaces from the Kuehn (2018) article.
alpha [0, 1]
s [1e-04, 1000]
k [1, 30]
num.trees [1, 2000]
replace [TRUE,FALSE]
sample.fraction [0.1, 1]
mtry.ratio [0, 1]
respect.unordered.factors [“ignore”, “order”, “partition”]
min.node.size [1, 100]
splitrule [“gini”, “extratrees”]
num.random.splits [1, 100]
mtry.power
is replaced by mtry.ratio
.
cp [1e-04, 1]
maxdepth [1, 30]
minbucket [1, 100]
minsplit [1, 100]
kernel [“linear”, “polynomial”, “radial”]
cost [1e-04, 1000]
gamma [1e-04, 1000]
tolerance [1e-04, 2]
degree [2, 5]
booster [“gblinear”, “gbtree”, “dart”]
nrounds [2, 8]
eta [1e-04, 1]
gamma [1e-05, 7]
lambda [1e-04, 1000]
alpha [1e-04, 1000]
subsample [0.1, 1]
max_depth [1, 15]
min_child_weight [1, 100]
colsample_bytree [0.01, 1]
colsample_bylevel [0.01, 1]
rate_drop [0, 1]
skip_drop [0, 1]
Kuehn D, Probst P, Thomas J, Bischl B (2018). “Automatic Exploration of Machine Learning Experiments on OpenML.” 1806.10961, https://arxiv.org/abs/1806.10961.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.