
1 Introduction

Multiparent recombinant inbred lines are a novel class of experimental design where the
genotypes of the final progeny are mosaics of the genotypes of the 2n recombinant inbred
founder lines. These designs have found recent application in mice (?), Arabadopsis (?),
barley (?), maize, rice, tomatoes (?) and wheat (??).

Existing software able to analyze multiparent designs includes happy, qtl and mpMap (the
previous version of mpMap2). Packages happy and qtl are focused on qtl mapping, and do
not provide the functionality necessary for map construction. Package mpMap provides map
construction functionality for multiparent designs, but has significant limitations. Some of
these limitations are computational, such as problems analysing the large data sets currently
being generated. Others are statistical, such as the inability to model finite generations of
selfing and residual heterozygosity.

These limitations motivated the development of mpMap2. Our goals for mpMap2 were

1. To write functionality in C++ where required.

2. To make use of the S4 object system, to enable easier integration of C++ code.

3. To extend the package to biparental and 16-parent populations.

4. To allow for finite generations of selfing, and therefore incorporate heterozygous lines
into the map construction process.

5. To allow the user to asses the computational resources required for an analysis.

6. To allow map construction to be performed visually and interactively.

7. To allow the simultaneous use of multiple experiments in the construction of a single
map.

8. To use unit testing to speed up development.

2 Experimental designs

We first outline the most general experimental design that we wish to be able to analyse. We
have 2n inbred founder lines which are combined over the first n generations, resulting in a
line whoose genetic material is a mosaic of the original 2n founders. An example of the first
n generations for n = 2 is given in Figure 1 and for n = 3 in Figure 2.

After the first n generations there is some number of generations of random intermating
(possibly zero), and some number of generations of inbreeding by selfing (possibly zero).
Mathematically it is possible to assume that the number of generations of inbreeding is infinite,
and in this case the design is said to be a 2n-way RIL (?). In practice this cannot be achieved,
but it might be assumed for the purposes of analysing the population. If the number of
generations of selfing is non-zero and the number of generations of inbreeding is assumed to
be infinite, the design is said to be a 2n-way intermated recombinant inbred population (IRIP)
(?).
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One complication is that different orders of the founders in the initial cross result in genet-
ically different individuals at the nth generation. For example, the first three genotypes of
{A,E}, {A,F} and {A,G} Figure 3 are possible at the third generation if the initial cross
{A,B,C,D,E, F,G,H} shown in Figure 2 is used. The remaining three genetoypes are
{E,F}, {E,G} and {E,H}, and are impossible using this initial cross. However, if founder
lines D and E were swapped in the initial cross, then the first three genotypes become im-
possible, and the last three become possible.

The initial crosses are known as funnels. Accounting for symmetries, there are three different
funnels for the 4 parent design, 315 different funnels for the 8-parent design and 638512875
different funnels for the 16-parent design. Two cases are mathematically tractable. In the
first, only one funnel is ever used. In the second every funnel is chosen at random, which
averages out the differences between the funnels.

A B C D

Figure 1: Combining four founders into a single line

3 Pedigrees

3.1 Biparental pedigrees

Package mpMap2 provides code for the generation of a large number of pedigrees. The
two simplest biparental design functions are rilPedigree(populationSize, selfingGen-

erations) which generates a biparental RIL pedigree, and f2Pedigree(populationSize)

which generates an F2 population. Note that the RIL pedigree requires the specification of
the number of generations of selfing, and the populations generated from this pedigree is
likely to contain some residual heterozygosity. The pedigree object has a slot selfing that
controls whether this heterozygosity is modelled in the analysis. The only possible values are
"finite", in which case heterozygosity is explicitly modelled, or "infinite" in which case
the number of generations of selfing is assumed to be inifinite.

Both the F2 and RIL are special cases of a more general biparental design, generated by

twoParentPedigree(initialPopulationSize, selfingGenerations,

nSeeds, intercrossingGenerations).

Input initialPopulationSize is the number of crosses of the founders, which by assumption
are all genetically identical. Input intercrossingGenerations is the number of generations
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A B C D E F G H

Figure 2: Combining eight founders into a single line

Figure 3: Example genotypes for the third generation of the eight-way cross, which will be
possible or impossible, depending on the choice of initial cross.
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of random intermating. Input nSeeds is the number of independent selfing lines generated
from each individual after the random intermating. Input selfingGenerations is the number
of generations of inbreeding by selfing.

3.2 Four-parent pedigrees

The functions for simulation of four parent RIL designs are fourParentPedigreeSingleFun-
nel and fourParentPedigreeRandomFunnels. In the first case only the funnel {A,B,C,D}
is used. In the second case each individual is drawn from a randomly chosen funnel. The
signatures for these functions are

fourParentPedigreeRandomFunnels(initialPopulationSize, selfingGenerations,

nSeeds, intercrossingGenerations),

fourParentPedigreeSingleFunnel(initialPopulationSize, selfingGenerations,

nSeeds, intercrossingGenerations).

3.3 Higher order pedigrees

The functions for generating eight and sixteen parent designs have identical signatures and
similar names, except with four replaced with eight or sixteen.

3.4 Inputting pedigrees

Pedigrees from experiments can be input into mpMap2 using the pedigree function.

pedigree(lineNames, mother, father, selfing, warnImproperFunnels = TRUE)

Input lineNames contains the names of the lines in the pedigree. Inputs mother and father

are integer vectors giving the indices of the parents within lineNames. Lines with mother and
father set to 0 are the initial lines of the cross, which are assumed to be inbred. The founding
lines of the pedigree must appear at the start of the pedigree. Input selfing must have value
"finite" or "infinite", and determines whether any subsequent analysis using this pedigree
should assume infinite generations of selfing. If input warnImproperFunnels is TRUE, then
warnings will be generated about lines derived from funnels with repeated founders.

For example, consider the following pedigree with three founder lines.

> p <- pedigree(lineNames = c("A", "B", "C", "F1-1", "F1-2", "F1-3", "F1-4",

+ "F2-1", "F2-2", "F3"), mother = c(0, 0, 0, 1, 1, 1, 2, 4, 6, 8),

+ father = c(0, 0, 0, 2, 2, 3, 3, 5, 7, 9), selfing = "finite")

> plot(pedigreeToGraph(p))

This pedigree will be recognised as a special case of the eight-parent design where the founders
are repeated within a funnel, so pedigrees of this type can be used for map construction.
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4 Genetic data and genetic maps

4.1 Simulation

Once a pedigree has been created it can be used to generate genetic data. Note that for
simulation of genotypes the pedigree is not restricted to those listed above, and arbitrary
pedigrees are allowed. The signature of the simulation function is

simulateMPCross(map, pedigree, mapFunction, seed).

Input map is a genetic map object in the format used by package qtl. Input pedigree is a
pedigree object and input mapFunction is a function that converts centiMorgan distances into
recombination fractions. The two suggested values are haldane and kosambi. Input seed is
the random seed used for random number generation in the simulation of the genetic data.
The output is an S4 object of class mpcross.

As an example of the functions provided so far, we simulate from two four-parent designs of
1000 individuals with one generation of intercrossing and four generations of selfing. One set
of simulated data uses randomly chosen funnels, while the other uses a single funnel. The
same genetic map is used in both cases; there are 2 chromosomes of length 300 cM, each of
which has 301 equally spaced markers.

> #Generate map

> map <- qtl::sim.map(len = rep(300, 2), n.mar = 301, anchor.tel = TRUE,

+ include.x = FALSE, eq.spacing = TRUE)

> #Generate random funnels pedigree

> pedigreeRF <- fourParentPedigreeRandomFunnels(initialPopulationSize = 1000,

+ nSeeds = 1, intercrossingGenerations = 1, selfingGenerations = 2)

> #Analysis pedigreeRF will assume finite generations of selfing (two)

> selfing(pedigreeRF) <- "finite"

> #Prefix line names with RF

> lineNames(pedigreeRF) <- paste0("RF", lineNames(pedigreeRF))

> #Generate single funnel pedigree

> pedigreeSF <- fourParentPedigreeSingleFunnel(initialPopulationSize = 1000,

+ nSeeds = 1, intercrossingGenerations = 1, selfingGenerations = 2)

> #Analysis pedigreeSF will assume finite generations of selfing (two)

> selfing(pedigreeSF) <- "finite"

> #Prefix line names with SF

> lineNames(pedigreeSF) <- paste0("SF", lineNames(pedigreeSF))

> crossSingleFunnel <- simulateMPCross(map = map, pedigree = pedigreeSF,

+ mapFunction = haldane, seed = 1)

> crossRandomFunnels <- simulateMPCross(map = map, pedigree = pedigreeRF,

+ mapFunction = haldane, seed = 1)

The simulated cross object has a single entry named geneticData, which is a list of S4
objects of class geneticData. This allows mpcross objects to contain data from multiple
experiments. In the case of crossSingleFunnel and crossRandomFunnels the list has a
single entry. Experiments can be combined using the addition operator to give a single object
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containing the data from both. The line names involved in both experiments must be different,
which is the reason for the prefixes "SF" and "RF".

> length(crossSingleFunnel@geneticData)

[1] 1

> length(crossRandomFunnels@geneticData)

[1] 1

> combined <- crossSingleFunnel + crossRandomFunnels

> length(combined@geneticData)

[1] 2

4.2 Summarising and subsetting

The number of markers, founder lines and final lines can be extracted using functions nMark-
ers, nFounders and nLines. The number of markers is standardised once the objects are
combined, so the nMarkers function outputs only a single value. Functions nFounders and
nLines output a value for each contained design.

> nMarkers(crossSingleFunnel)

[1] 602

> nFounders(crossSingleFunnel)

[1] 4

> nFounders(combined)

[1] 4 4

> nLines(crossSingleFunnel)

[1] 1000

> nLines(combined)

[1] 1000 1000

A summary of an mpcross object is generated using the print function.

> print(crossSingleFunnel)

6



-------------------------------------------------------

Summary of mpcross object

-------------------------------------------------------

0 markers had missing values in founders

0 markers had non-polymorphic founder genotypes

-------------------------------------------------------

0 markers were biallelic.

602 markers were multiallelic.

-------------------------------------------------------

0 markers had >5% missing data.

0 markers had >10% missing data.

0 markers had >20% missing data.

Subsets of the data in an mpcross object can be extracted using the subset function.

subset(mpcross, markers, chromosomes, lines, groups)

Input markers can be marker names of indices within markers(mpcross). Input chromosomes
is only valid if object mpcross has an associated map, and must refer to chromosomose by
name. Input lines must refer to lines by name. Input groups is only valid if object mpcross
has associated linkage groups (without an actual map).

4.3 Fully informative markers

When simulating data using simulateMPCross all markers are generated as fully informative.
We can see this by inspecting the contained objects of class geneticData. Slot founders

contains data about the founder alleles. The founders data can be accessed by the helper
function founders. In the following case, each founder line carries a unique marker allele, for
all five markers.

> #Equivalent to crossSingleFunnel@geneticData[[1]]@founders[,1:5]

> founders(crossSingleFunnel)[,1:5]

D1M1 D1M2 D1M3 D1M4 D1M5

SFL1 1 1 1 1 1

SFL2 2 2 2 2 2

SFL3 3 3 3 3 3

SFL4 4 4 4 4 4

When simulating data using simulateMPCross, there are also marker heterozygotes, which by
default are all simulated as being distinguishable. The simulated object contains information
about how combinations of marker alleles from the founder lines are mapped to observed
values for the final population. As the founders are assumed to be inbred, it is logical that
a homozygote of each marker allele present in the founders should be encoded identically in
the final population. For example, in the simulated population we are considering, there are
alleles 1 - 4 for each marker, and values 1 - 4 for the final population represent homozygotes
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of those alleles. This restriction is enforced by the package, so it is not possible to encode a
homozygote of marker allele 2 in the founder lines, as 3 in the final population.

The marker alleles for the founders do not have to be the values 1 - 4. For example, another
possibility is:

D1M1 D1M2 D1M3 D1M4 D1M5

SFL1 1 1 1 1 1

SLF2 10 10 10 10 10

SLF3 100 100 100 100 100

SLF4 200 200 200 200 200

In this case values 1, 10, 100 and 200 for the final population must represent a homozygote
of the corresponding marker allele.

Data about the encoding of heterozygotes is contained in the hetData slot. Heterozygote data
for a marker is formatted in three columns. The first and second are marker alleles, and the
third is the encoding of that combination of marker alleles, for a line in the final population.
As mentioned previously, it is required that a homozygote for a marker allele m be encoded
as m. For example, a row containing 1, 1 and 0 would be invalid, as it attempts to encode a
homozygote of marker allele 1 as 0 in the final population.

Helper function hetData can be used to access the heterozygote data. For example:

> #Equivalent to crossSingleFunnel@geneticData[[1]]@hetData[["D1M1"]]

> hetData(crossSingleFunnel, "D1M1")

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 2 1 5

[3,] 3 1 6

[4,] 4 1 7

[5,] 1 2 5

[6,] 2 2 2

[7,] 3 2 8

[8,] 4 2 9

[9,] 1 3 6

[10,] 2 3 8

[11,] 3 3 3

[12,] 4 3 10

[13,] 1 4 7

[14,] 2 4 9

[15,] 3 4 10

[16,] 4 4 4

Columns one and two give a pair of marker alleles, and the third column gives the encoding of
this combination in the final poulation. So observed values 1− 4 correspond to homozygotes
for founder lines, and values 5 − 10 correspond to different heterozygotes. We specified 2
generations of selfing and this is reflected in the distribution of observed values for the final
population.
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> table(finals(crossSingleFunnel)[,1])

1 2 3 4 5 6 7 8 9 10

222 198 187 192 33 35 31 32 33 37

4.4 Less informative markers

The most common types of markers currently used are Single Nucleotide Polymorphism (SNP)
markers. To convert our simulated data objects to these types of markers, we combine them
with a call to multiparentSNP.

> combinedSNP <- combined + multiparentSNP(keepHets = TRUE)

This modification can also be applied on a per-dataset basis.

> combinedSNP <- combined

> combinedSNP@geneticData[[1]] <- combinedSNP@geneticData[[1]] +

+ multiparentSNP(keepHets = TRUE)

> combinedSNP@geneticData[[2]] <- combinedSNP@geneticData[[2]] +

+ multiparentSNP(keepHets = FALSE)

> founders(combinedSNP@geneticData[[1]])[, 1:5]

D1M1 D1M2 D1M3 D1M4 D1M5

SFL1 0 1 1 0 0

SFL2 0 1 0 1 1

SFL3 0 1 0 1 1

SFL4 1 0 0 1 0

> hetData(combinedSNP, "D1M1")

[[1]]

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 1 1 1

[3,] 0 1 2

[4,] 1 0 2

[[2]]

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 1 1 1

The founders in object combinedSNP now have only two alleles (0 and 1) for every marker.
In the first data set combinations of different marker alleles are coded as 2. For the second
data set we specified keepHets = FALSE so these marker heterozygotes are replaced by NA

in the data, and no encoding for heterozygotes is specified. The corresponding function for
biparental designs is biparentalSNP.
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4.5 Importing data

An mpcross object can be created using function mpcross.

mpcross(founders, finals, pedigree, hetData, fixCodingErrors = FALSE)

Input founders is the matrix of founder marker alleles, where rows correspond to lines and
columns correspond to marker names. The number of rows must be equal to the number of
initial lines in the pedigree (lines which have mother and father equal to 0). The row names
of input founders must match the names of the initial lines in the pedigree.

Input finals is the matrix of marker alleles for the final population of genotyped lines, where
rows correspond to lines and columns correspond to marker names. The row names of this
matrix must be lines named in the pedigree. The column names must be the marker names,
which must be identical to the markers given for founders.

Input pedigree must be a pedigree object, as described in Section 3.

Input hetData describes the encoding of the marker alleles for the final population, and must
have class hetData. It is list, where the names of elements are marker names, and each entry
is a three-column matrix, giving the marker encodings for that marker. In the simplest case
we have nMarkers SNP markers without any heterozygote calls, so the hetData object can
be constructed as follows.

> nMarkers <- 10

> hetData <- replicate(nMarkers, rbind(rep(0, 3), rep(1, 3)), simplify=FALSE)

> names(hetData) <- paste0("M", 1:10)

> hetData <- new("hetData", hetData)

> hetData[[1]]

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 1 1 1

Specifying hetData = infiniteSelfing in the call to mpcross is a shortcut for this common
case. Another common case is bi-allelic SNP markers with heterozygotes called, which is
specified with hetData = hetsForSNPMarkers in the call to mpcross. The encoding for the
heterozygotes can be automatically be determined from the data, as there is only a single
heterozygote. An example of manually constructing the hetData object for SNP markers
with heterozygotes is as follows.

> nMarkers <- 10

> hetData <- replicate(nMarkers, rbind(rep(0, 3), rep(1, 3), c(0, 1, 2),

+ c(1, 0, 2)), simplify=FALSE)

> names(hetData) <- paste0("M", 1:10)

> hetData <- new("hetData", hetData)

> hetData[[1]]

[,1] [,2] [,3]

[1,] 0 0 0
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[2,] 1 1 1

[3,] 0 1 2

[4,] 1 0 2

If fixCodingErrors = TRUE, then the function will remove invalid data. Invalid data is
detected using the listCodingErrors function. See Section 4.6 for further details. The
previously constructed object crossSingleFunnel can be constructed from its parts as

> founders <- founders(crossSingleFunnel)

> finals <- finals(crossSingleFunnel)

> hetData <- hetData(crossSingleFunnel)

> crossSingleFunnel <- mpcross(founders = founders, finals = finals,

+ pedigree = pedigreeSF, hetData = hetData)

4.6 Invalid data

Real data often contains some invalid data. mpMap2 performs extensive checks, and will
reject invalid data.

> #Put in two errors for the founders

> founders[3,3] <- 10

> founders[2,2] <- NA

> #Put in an error for the finals

> finals[1, 1] <- 100

> #Put in two errors for the hetData

> hetData[4] <- list(rbind(rep(0, 3), rep(1, 3)))

> hetData[[5]][1,1] <- NA

> error <- try(crossSingleFunnel <- mpcross(founders = founders, finals = finals,

+ pedigree = pedigreeSF, hetData = hetData))

> cat(error)

Error in validObject(.Object) :

invalid class âĂIJgeneticDataâĂI object: 1: Coding error for marker D1M3: Founder allele 10 was not present in @hetData[[3]]

invalid class âĂIJgeneticDataâĂI object: 2: Coding error for marker D1M4: Founder allele 2 was not present in @hetData[[4]]

invalid class âĂIJgeneticDataâĂI object: 3: Coding error for marker D1M4: Founder allele 3 was not present in @hetData[[4]]

invalid class âĂIJgeneticDataâĂI object: 4: Coding error for marker D1M4: Founder allele 4 was not present in @hetData[[4]]

invalid class âĂIJgeneticDataâĂI object: 5: Coding error for marker D1M5: Founder allele 1 was not present in @hetData[[5]]

invalid class âĂIJgeneticDataâĂI object: 6: Omitting details of further coding errors

A more computer-friendly list of most of thees errors is available using the listCodingErrors
function.

> errors <- listCodingErrors(founders = founders, finals = finals, hetData = hetData)

> errors$invalidHetData

Marker Row Column

[1,] 3 3 1
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[2,] 3 7 1

[3,] 3 9 2

[4,] 3 10 2

[5,] 3 11 1

[6,] 3 11 2

[7,] 3 12 2

[8,] 3 15 1

[9,] 4 1 1

[10,] 4 1 2

[11,] 5 1 1

> errors$null

[1] 2

> head(errors$finals)

Row Column

[1,] 1 1

[2,] 1 4

[3,] 3 4

[4,] 5 4

[5,] 6 4

[6,] 7 4

We begin with errors$invalidHetData. There are errors in the hetData for the third marker,
because marker allele 3 has been removed for this marker. This means that heterozygotes
between this allele and other marker alleles are now invalid. There are errors in the hetData

for the fourth marker, because there is no marker allele 0. There is an error in the hetData

for the fifth marker, because NA is invalid here.

The entry errors$null indicates that the second marker has a missing allele for a founder.
For these markers the observed marker alleles for the final population must be NA, and the
corresponding hetData entry must have zero rows.

The entry errors$finals indicates that line 1 has an invalid value of 100 for marker 1. It
also indicates that every marker allele except 1 is invalid for marker 4, due to the modification
of hetData[[4]].

4.7 Genetic maps

The format used for genetic maps in this package is identical to that in package qtl. A genetic
map is a named list, where the name of each entry is the name of that chromosome. Each
entry contains the names and positions of each marker, in increasing order. The overall object
must have class "map". We now give an example of the structure of a simulated map.

> simulatedMap <- qtl::sim.map(len = rep(100, 2), n.mar = 11, anchor.tel = TRUE,

+ include.x = FALSE, eq.spacing = FALSE)

> #map object has class "map"

> class(simulatedMap)
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[1] "map"

> #Names of entries are chromosomoe names

> names(simulatedMap)

[1] "1" "2"

> #Markers are in increasing order.

> simulatedMap[["1"]]

D1M1 D1M2 D1M3 D1M4 D1M5 D1M6 D1M7

0.000000 3.690961 10.556573 25.683635 45.513211 57.730927 61.346645

D1M8 D1M9 D1M10 D1M11

66.263965 82.381991 85.227520 100.000000

attr(,"class")

[1] "A"

5 Estimation of recombination fractions

5.1 Methodology

For any pair of genetic locations there is a probability model govering the joint distribution
of the sources of the inherited alleles. That is, a genotyped final line will have an allele at
marker M1 inherited from some founder line, and another allele at marker M2 inherited from
a (potentially different) founder line. We ignore the fact that different founders may have
identical alleles; it is the source of the allele that is important.

These joint distributions are governed by the identity-by-descent (IBD) probabilities, which
have been calculated for a variety of different designs (????). These probabilities are a func-
tion of the recombination fraction r between the two markers. The relevant probabilities for
more complicated designs (especially those with finite generations of selfing) are too compli-
cated to give here, but can be calculated with the help of a computer algebra system such as
Octave or Mathematica.

If two markers are fully informative, then the probability model is informative for the pa-
rameter r, which can be estimated using numerical maximum likelihood. However this may
no longer be true when the markers are less informative. For example, assume we have a
four-parent design with a single funnel and infinite generations of selfing, and markers M1

and M2 with the following distribution of marker alleles for the founders.

M1 M2

Founder 1 1 0

Founder 2 0 1

Founder 3 0 0

Founder 4 1 1

In this case every combination of marker alleles occurs with probability 1
4 , regardless of the

parameter r. For four-parent designs this combination of marker allele distributions is the
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only one that may be non-informative for r. Note that for four-parent designs with finite
generations of selfing this combination may in fact be informative.

The situation appears to be more complicated the larger the number of founders. For the
eight-way design there are combinations of marker allele distributions that are completely
uninformative, similar to the four parent design. However there are also marker allele distri-
butions which are approximately uninformative for the parameter r. For example, consider
the following marker allele distributions with a single funnel and infinite generations of selfing.

M1 M2

Founder 1 1 0

Founder 2 0 0

Founder 3 0 1

Founder 4 1 0

Founder 5 1 0

Founder 6 0 0

Founder 7 1 1

Founder 8 1 1

In this case the likelihood is approximately (but not exactly) flat. The marker probabilities
as a function of r are shown in Figure 4. For comparison, we consider the following marker
allele distribution to be informative.

M1 M2

Founder 1 1 0

Founder 2 1 1

Founder 3 0 0

Founder 4 1 0

Founder 5 1 0

Founder 6 0 0

Founder 7 1 1

Founder 8 1 1

The marker probabilities for this informative case are shown in Figure 5. There are also cases
where the likelihood is approximately symmetric. For example, consider the following marker
allele distribution.

M1 M2

Founder 1 1 0

Founder 2 1 1

Founder 3 0 1

Founder 4 1 0

Founder 5 1 0

Founder 6 0 0

Founder 7 1 1

Founder 8 1 1

The marker probabilities for this case are shown in Figure 6. In this case r = 0 is indistin-
guishable from r = 0.5.
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Figure 4: Joint marker probabilities for an approximately uninformative pair of markers. The
design used is an eight-parent cross with a single funnel, zero generations of intercrossing and
infinite generations of selfing.
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Figure 5: Joint marker probabilities for an informative pair of markers. The design used
is an eight-parent cross with a single funnel, zero generations of intercrossing and infinite
generations of selfing.
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Figure 6: Joint marker probabilities for an uninformative pair of markers. The design used
is an eight-parent cross with a single funnel, zero generations of intercrossing and infinite
generations of selfing.

We can test whether a pair of markers is completely non-informative (in the sense of a flat
likelihood) by testing whether the derivative of the likelihood is identically zero. This was
the approach originally used in mpMap, however it appears to only be practical for designs
involving infinite generations of selfing. This approach cannot be used to identify marker
pairs like those in Figure 4, which are approximately non-informative, or those in Figure 6,
which have an approximately symmetric likelihood. For this reason it is necessary to use a
numerical test for non-informative and approximately non-informative marker pairs.

The marker probabilities are computed for a large number of equally spaced values of r. Let
{Pi(r)} be the set of marker probabilities at some recombination value r. For a pair of SNP
markers, i would take values in {{0, 0}, {0, 1}, {1, 0}, {1, 1}}. If there are recombination val-
ues r1 and r2 with |r1 − r2| > 0.06 so that the L1 distance

∑
i |Pi(r1)− Pi(r2)| is less than

0.003, then the pair of markers will be declared uninformative. This heuristic is computa-
tionally expensive, but has the advantage of detecting both uninformative and approximately
uninformative pairs of markers.

Although the number of markers may be large, there are only a finite number of different
marker allele distributions that are possible. Therefore we collect a list of distinct marker
allele distributions and run the heuristic on all pairs. The computational cost of the heuristic
is therefore a fixed cost, independent of the number of lines or number of markers. In the
context of large data sets this computational cost will likely be insignificant.

5.2 Implementation

The function estimateRF estimates the recombination fractions between all pairs of markers
in an mpcross object using numerical maximum likelihood and a simple grid search. It
accounts for all the data sets contained in the object when performing the estimation, and
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uses the numerical test mentioned at the end of Section 5.1 to return a value of NA where the
relevant probability model is uninformative or approximately uninformative.

The signature of the function is

estimateRF(object, recombValues, lineWeights, gbLimit = -1, keepLod = FALSE,

keepLkhd = FALSE, verbose = FALSE, markerRows = 1:nMarkers(object),

markerColumns = 1:nMarkers(object))

Input object is an object of class mpcross and input recombValues is the set of recombi-
nation fraction values to test in the grid search. Input lineWeights allows correction for
segregation distortion and is beyond the scope of this document, see ? for further details.
Input gbLimit specifies the maximum amount of memory to be used during the comutation.
Input keepLkhd determines whether the value of the maximum likelihood is computed. Input
keepLod determines whether the likelihood ratio statistic for testing the hypothesis r 6= 1

2 is
computed. Input verbose outputs diagnostic information such as the current progress, and
the amount of memory used. Inputs markerRows and markorColumns are used to compute
only part of the full recombination fraction matrix. When using these values, only the part
in the upper-right triangle is computed.

The value returned by the function is an object of class mpcrossRF. It has the same genetic-

Data slot as the object of class mpcross, but also contains a slot named rf with the results of
the computation. The main result is the matrix of recombination fraction estimates, which is
stored in slot @rf@theta. If this was stored as a numeric matrix it would require hundreds of
gigabytes of storage space for some data sets. Fortunately, this matrix is symmetric, and each
entry is one of the values specified in input recombValues. This matrix is therefore stored as
an object of class rawSymmetricMatrix, which stores each value in the upper triangle of the
matrix as a single byte. Each byte is interpreted as the index into recombValues which gives
the estimated value. If n is the number of markers we require only n(n+1)

2 bytes of storage,
a 16-fold reduction in storage requirements compared to the storage of a similar object in
mpMap. The value of 0xff is interpreted as being NA. This requires input recombValues to
always have less than 256 values, but this is not a siginificant limitation.

Input keepLod instructs the function to compute the matrix of likelihood ratio statistics for
testing whether the recombination fractions are different from 1

2 . Input keepLkhd instructs
the function to return the maximum value of the likelihood for every pair of markers. The
values contained in these extra symmetric matrices are not restricted to a small number of
levels, so they are stored as objects of class dspMatrix (dense symmetric matrix in packed
storage) from package Matrix. These matrices require 4n(n + 1) bytes of storage, which
becomes infeasible very quickly. For example, with n = 105 markers each of these matrices
occupy 40 gb. In generaly we suggest that these matrices not be computed.

The intermediate stages of the computation require significantly more memory than the final
result. It may be necessary to perform the computation of the recombination fraction matrix
in parts to avoid running out of memory. Input gbLimit allows the user to specify the
maximum amount of memory (in gigabytes) to be used at any one time.

Our package makes more extensive use of lookup tables and pre-computation than mpMap.
As a result we can analyse large data sets using only OpenMP multi-threading. Package
mpMap required the use of much more complicated MPI or CUDA multi-threading to achieve
acceptable performance, and this code was much harder to maintain and use.
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To demonstrate this function, we apply it to the object combined which we created previously.
In general option verbose would be set to TRUE or FALSE. In this case we need output suitable
for a document, so we use list(progressStyle=1). This specifies that that argument style
of txtProgressBar should be 1, giving output suitable for a document instead of a console.

> rf <- estimateRF(object = combinedSNP, verbose = list(progressStyle = 1))

Allocating results matrix of 88573464 bytes = 0 gb

Total lookup table size of 177632 bytes = 0 gb

==============================================================================

6 Construction of linkage groups

Partitioning the markers into linkage groups can be performed using the function formGroups.
It has signature

formGroups(mpcrossRF, groups, clusterBy = "theta", method = "average",

preCluster = FALSE)

Input mpcrossRF is an object of class mpcrossRF. Input groups is the number of linkage
groups to construct. Input method is the choice of linkage method, and must be one of
"average", "complete" or "single". Input clusterBy is the choice of dissimilarity matrix
to use for clustering. It can be either "theta" for the recombination fraction matrix, "lod"
for the matrix of likelihood ratio test statistics, or "combined". In the last case, let ∇ be the
minimum distance between any pair of recombination fraction values used for the numerical
maximum likelihood step, let L be the matrix of likelihood ratio statistics, let l be maximum
of the values of L and let Θ be the matrix of recombination fractions. Then the dissimilarity
matrix used in the "combined" case is

Θ +
L

l
∇.

Intuitively, this means that the values in L are used to break ties between equal values in Θ.
We emphasise that specifying "combined" or "lod" for input clusterBy requires the matrix
of likelihood ratio statistics to be computed using estimateRF, and as mentioned this may
require an infeasible amount of storage.

Internally formGroups uses hierarcichal clustering, and this requires that the full dissimilarity
matrix be stored in memory (as opposed to in a compressed form, such as an object of type
rawSymmetricMatrix). This means that if there are a large number of markers formGroups

may require a large amount of working memory. Specifying preCluster = TRUE attempts to
reduce the amount of memory required by identifying groups of markers where the recombi-
nation fractions between them are all zero. These markers are grouped before the hierarchical
clustering is performed, reducing the dimension of the dissimilarity matrix and therefore the
required working memory.
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7 Ordering of chromosomes

Ordering of chromosomes is performed using simulated annealing. We use a simulated an-
nealing method (?) known as Anti-Robinson seriation. The implementation originally comes
from the seriation package (?), and has been adapted to our data structures. The simulated
annealing algorithm is based on two types of transformations. The first is swapping a pair
of random markers, and is computationally fast. The second chooses a random marker and
moves it to a random position. This second transformation can be computationally expensive,
especially if the random position is very far away from the previous position.

The ordering function is

orderCross(mpcrossLG, cool = 0.5, tmin = 0.1, nReps = 1, maxMove = 0,

effortMultiplier = 1, randomStart = TRUE, verbose = FALSE)

Input cool is the rate of cooling for the simulated annealing algorithm. Smaller values lead
to slower cooling, and higher computational effort. Input tmin is the minimum temperature
for the algorithm. Input nReps is the number of independent repetitions of the algorithm to
perform. If nReps > 1 then the best ordering is returned. If randomStart = TRUE then each
of these repetitions starts from a random ordering, otherwise they are all started using the
current ordering of the mpcrossLG object.

Input maxMove indicates the maximum possible distance to move a marker using the ”move”
transformation mentioned previously. A value of 0 indicates no limit, so the chosen marker
can be shifted to any location. A value of 1 means the chosen marker can be shifted left
one position or right one position, etc. Input effortMultiplier increases the amount of
computational effort. So a value of 2 will double the amount of computational time, but
hopefully result in a better ordering. If verbose = TRUE then a progress bar is displayed.

Although simulated annealing performs extremely well on smaller data sets, it is prohibitively
expensive on larger data sets and cannot easily be parallelized. Fortunately, it is not generally
necessary to order the entire chromosome in one pass. It is acceptable to use hierarchical
cluster to form k groups, and order these k groups using simulated annealing. The hierarchical
clustering ordering function is

clusterOrderCross(mpcrossLG, cool = 0.5, tmin = 0.1, nReps = 1,

maxMove = 0, effortMultiplier = 1, randomStart = TRUE, nGroups)

After using clusterOrderCross, finer scale ordering can be performed using orderCross

with randomStart = FALSE and setting maxMove to a relatively small value, which ensures
only local changes are made to the ordering.

8 Estimation of map distances

Estimation of map distances is non-trivial, even if the correct ordering of the markers is
known. One possibility is to take the estimated recombination fractions between adjacent
markers, and convert them to centiMorgan distances. However, as demonstrated in Section 5,
for some experimental designs and some specific marker allele distributions, the corresponding
recombination fraction is very hard to estimate. In some cases the data can even be completely
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uninformative about the recombination fraction. This approach is also wasteful in terms of
the available information; we have recombination fractions estimates between all pairs of
markers, not just all adjacent pairs.

Our map estimation process uses a matrix of constraints, involving not just the recombination
fractions between adjacent markers, but any pair of markers that are sufficiently close, in terms
of the chosen ordering. This matrix equation is then solved by non-linear least squares, using
the nnls (?) package. Consider the case where there are three markers. With the markers
in the (assumed) correct order, the matrix of estimated genetic distances (obtained from the
estimated recombination fractions) is  0 5 15

5 0 7
15 7 0

 .

Then the matrix equation to be solved is 1 0
1 1
0 1

( a1
a2

)
=

 5
15
7

 ,

where a1 is the distance between the first and second markers, and a2 is the distance between
the second and third markers.

If all pairs of markers are used, then the matrix equation becomes large very quickly. As
a compromise, we use only pairs of markers that are close, in terms of position within the
specified ordering. For example, assume that there are five markers, and we wish to estimate
the map distances, using only pairs of markers that are separated by at most two other genetic
markers. Assume that the estimated matrix of pairwise genetic distances is

0 5 9 17 24
5 0 7 11 15
9 7 0 6 9
17 11 6 0 3
24 15 9 3 0

 .

Then the corresponding matrix equation is

1 0 0 0
1 1 0 0
1 1 1 0
0 1 0 0
0 1 1 0
0 1 1 1
0 0 1 0
0 0 1 1
0 0 0 1




a1
a2
a3
a4

 =



5
9
17
7
11
15
6
9
3


.

Note that the constraint a1 + a2 + a3 + a4 = 24 is not used.

The function to estimate a genetic map using this approach is
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estimateMap (mpcrossLG, mapFunction = rfToHaldane, maxOffset = 1,

maxMarkers = 2000, verbose = FALSE)

Input mpcrossLG is a mpcross object with assigned linkage groups. Input mapFunction is a
map funtion that turns recombination fractions into centiMorgan distances. Input maxOffset
is the maximum ordering difference between two markers, so that the estimated distance
between those markers will be used. For example, in the five marker example just given, this
input was 3, because the distance between markers 1 and 4 were used, and so was the distance
between markers 2 and 5. But the distance between markers 1 and 5 was not used. Input
maxMarkers is the maximum number of markers, for which the genetic map will be estimated
in a single pass. If there is a larger number of markers in a single linkage group, the map will
be estimated in smaller parts, and these parts are then combined. If input verbose is TRUE,
then logging output is generated.

9 Probability models for imputation and probability compu-
tations

Imputation of founder genotypes is performed by assuming a Hidden Markov Model (HMM)
for the underlying genotypes. Strictly speaking this is incorrect, as the founder genotypes do
not form a Markov Chain. For example, consider the biparental recombinant inbred design. ?
gives the probability of the two-loci recombinant genotype AB as r

1+2r and the probabilities of

the non-recombinant genotype AA as 1
2(1+2r) . If the IBD genotypes formed a Markov Chain

then the probability of the three equally spaced loci having the IBD genotype AAA would be

2

(
1

2(1 + 2r)

)2

.

This value is in fact (?)

1 + 2r − 4r2 − 2cr2 + 4cr3

2(1 + 2r)(1 + 4r − 4cr2)
,

where c = r−2P (double recombinant). As shown in Figure 7 the approximation is very good,
especially over shorter genetic distances. Assuming that the IBD genotype forms a Markov
Chain goverened by its two-locus probabilities is unlikely to cause any problems.

10 Imputation

The underlying genotypes can then be imputed using the Viterbi algorithm. This imputation
method is implemented by the function imputeFounders, which has signature

imputeFounders(mpcrossMapped, homozygoteMissingProb = 1,

heterozygoteMissingProb = 1, errorProb = 0, extraPositions = list())

Input extraPositions is a list gives extra (non-marker) positions for which to perform im-
putation. These positions can be given explicitly, in the format shown below, or using the
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Figure 7: The true three-point probability of genotype AAA for a recombinant inbred line at
three equally spaced locations, and the Markov Chain approximation.

convenience function generateGridPositions(s). Specifying this convenience function for
extraPositions generates a grid of points for each chromosome, equally spaced with distance
s.

We apply this function to the object combinedSNP, which contains two data sets.

> mappedSNP <- new("mpcrossMapped", combinedSNP, map = map)

> imputed <- imputeFounders(mappedSNP, extraPositions =

+ list("2" = c("a" = 3.14, "b" = 66)))

The extra positions are specified to be positions 3.14 named a and 66 named b. There are no
extra positions on chromosome 1. Alternatively, we could specify a grid of points, separated
by 10 cM.

> imputed <- imputeFounders(mappedSNP, extraPositions = generateGridPositions(10))

As we originally specified the selfing slot to have value "finite", the imputed values will
contain heterozygotes. The encoding of heterozygotes is given in an entry named key, which
can be extracted using the imputationKey function. Comparing the imputed data to the
original data (before the markers were converted to SNP markers) shows good agreement for
the first data set, even for the heterozygotes.

> imputed <- imputeFounders(mappedSNP)

> imputationKey(imputed, experiment = 1)

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 2 5
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[3,] 1 3 6

[4,] 1 4 7

[5,] 2 1 5

[6,] 2 2 2

[7,] 2 3 8

[8,] 2 4 9

[9,] 3 1 6

[10,] 3 2 8

[11,] 3 3 3

[12,] 3 4 10

[13,] 4 1 7

[14,] 4 2 9

[15,] 4 3 10

[16,] 4 4 4

> table(imputationData(imputed, experiment = 1), finals(combined)[[1]])

1 2 3 4 5 6 7 8 9 10

1 123651 1847 1134 797 797 698 570 4 2 5

2 413 114445 975 1047 794 8 9 653 606 1

3 236 347 121590 1904 10 744 7 666 13 776

4 160 254 249 118324 2 7 529 2 673 743

5 68 61 0 0 16414 208 135 125 111 1

6 24 0 35 2 88 18212 230 325 2 32

7 17 0 0 33 69 55 17623 19 341 35

8 1 83 82 0 74 70 7 17119 221 46

9 0 32 0 34 46 0 50 48 16540 81

10 0 1 34 35 2 105 161 143 173 16855

The pattern of imputation errors for the heterozygotes makes sense; value 5 is a heterozygote
of founders 1 and 2, and the most frequent imputation error is to classify it as a homozygote
of founder 1 or 2.

For the second data set no heterozygotes are imputed. This is because no heterozygote
markers were called, so heterozygotes are either missing or consistent with being homozygotes,
in which case the homozygote is always more likely. The only clue in the data is that missing
values are always heterozygotes in this case. Setting heterozygoteMissingProb to 1 and
homozygoteMissingProb to 0.05 gives acceptable results.

> table(imputationData(imputed, experiment = 2), finals(combined)[[2]])

1 2 3 4 5 6 7 8 9 10

1 121810 1657 1387 1766 11398 11211 11635 417 570 362

2 326 121116 1444 1474 7856 275 195 10892 11175 434

3 357 330 116287 1376 86 7652 156 7678 180 9972

4 469 286 245 117495 132 125 7439 77 7970 6288
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> imputed <- imputeFounders(mappedSNP, heterozygoteMissingProb = 1,

+ homozygoteMissingProb = 0.05)

> table(imputationData(imputed, experiment = 2), finals(combined)[[2]])

1 2 3 4 5 6 7 8 9 10

1 121966 1479 1233 1546 990 851 1089 17 21 17

2 282 121304 1264 1300 842 8 8 932 1020 17

3 270 248 116609 1218 7 799 13 887 8 857

4 321 213 172 117944 7 3 868 6 948 751

5 39 45 0 1 17403 177 139 150 236 2

6 42 0 42 0 50 17254 147 161 5 176

7 42 0 0 49 46 56 17061 2 194 163

8 0 64 25 1 73 77 2 16834 157 138

9 0 36 0 25 54 1 61 35 17235 144

10 0 0 18 27 0 37 37 40 71 14791

The miss-classifications still demonstrate the same problem to a lesser extent. Value 5 is a
heterozygote of founders 1 and 2, and just under 50% of these values are miss-classified as
homozygotes of founders 1 or 2.

11 Example

11.1 No intecrossing or selfing

We begin with an example showing that mpMap2 can construct correct maps from unusual
experimental designs. In this case we use a four-parent cross with randomly chosen funnels and
no intercrossing and no selfing. The underlying genotypes for this design are all heterozygotes.

> pedigree <- fourParentPedigreeRandomFunnels(initialPopulationSize = 800,

+ intercrossingGenerations = 0, selfingGenerations = 0, nSeeds = 1)

> selfing(pedigree) <- "finite"

> map <- qtl::sim.map(len = rep(300, 3), n.mar = 101, anchor.tel = TRUE,

+ include.x = FALSE, eq.spacing = FALSE)

> cross <- simulateMPCross(pedigree = pedigree, map = map,

+ mapFunction = haldane, seed = 1)

> crossSNP <- cross + multiparentSNP(keepHets=TRUE)

> table(finals(cross))

5 6 7 8 9 10

41825 41089 40692 39893 39590 39311

The estimation of recombination fractions is somewhat slow due to the amount of precalcu-
lation, as every distinct funnel is treated separately. This precalculation cost does not grow
with the total number of markers.

> #Randomly rearrange markers

> crossSNP <- subset(crossSNP, markers = sample(markers(cross)))

> rf <- estimateRF(crossSNP, verbose = list(progressStyle = 1))
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Allocating results matrix of 22475328 bytes = 0 gb

Total lookup table size of 368928 bytes = 0 gb

======================================================================

The next steps are forming linkage groups, ordering chromosomes and imputing missing re-
combination fraction values.

In this case we disable parallelisation in the marker ordering step. As this is a small example,
on a computer with a large number of threads parallelisation can significantly slow down the
runtime. On the other hand, when doing local reordering on large datasets, parallelisation
can help significantly.

> grouped <- formGroups(rf, groups = 3, method = "average", clusterBy="theta")

> try(omp_set_num_threads(1), silent = TRUE)

NULL

> ordered <- orderCross(grouped, effortMultiplier = 2)

> imputedTheta <- impute(ordered, verbose = list(progressStyle = 1))

Starting imputation for group 1

================================================================================

Starting imputation for group 2

================================================================================

Starting imputation for group 3

================================================================================

The next step is to estimate the map. Our estimated map is significantly longer than the
true map. Note the use of the function jitterMap. This function spaces out markers that
have been assigned to the same location. This is necessary for the purposes of imputation,
as estimateMap is capable of estimating a map where markers which are observed to have
at least one recombination event between them are assigned the same location. This makes
the map incompatible with the data, and would cause problems during the imputation step,
unless a non-zero errorProb is specified.

> estimatedMap <- estimateMap(imputedTheta, maxOffset = 10)

> estimatedMap <- jitterMap(estimatedMap)

> #match up estimated chromosomes with original chromosomes

> estChrFunc <- function(x) which.max(unlist(lapply(estimatedMap,

+ function(y) length(intersect(names(y), names(map[[x]]))))))

> estimatedChromosomes <- sapply(1:3, estChrFunc)

> tail(estimatedMap[[estimatedChromosomes[[1]]]])

D1M6 D1M4 D1M3 D1M5 D1M2 D1M1

286.3170 290.8652 293.2176 295.5700 297.9224 298.3933

> tail(map[[1]])
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D1M96 D1M97 D1M98 D1M99 D1M100 D1M101

286.9760 287.1171 288.5251 292.6399 292.8494 300.0000

The reason for constructing a genetic map is often to search for quantitative trait loci (QTL).
Therefore it is not the overall length that is important, but the accurate imputation of the
underlying founder genotypes. In this case the imputation is highly accurate.

> mappedObject <- new("mpcrossMapped", imputedTheta, map = estimatedMap)

> imputedFounders <- imputeFounders(mappedObject)

> summary <- table(imputedFounders@geneticData[[1]]@imputed@data[,markers(cross)],

+ finals(cross))

> sum(diag(summary))/sum(summary)

[1] 0.9503424
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