Nothing
###############################################################
###############################################################
###############################################################
#' @export
opes_idnn_ln <- function(x, ...) UseMethod("opes_idnn_ln")
#' Open-set ID/nearest-neighbor label noise
#'
#' Introduction of \emph{Open-set ID/nearest-neighbor label noise} into a classification dataset.
#'
#' \emph{Open-set ID/nearest-neighbor label noise} corrupts (\code{level}ยท100)\% of the samples with classes in \code{openset}.
#' Then, the labels of these samples are replaced by
#' the label of the nearest sample of a different in-distribution class. The order of the class
#' labels for the indices in \code{openset} is determined by \code{order}.
#'
#' @param x a data frame of input attributes.
#' @param y a factor vector with the output class of each sample.
#' @param level a double with the noise level in [0,1] to be introduced.
#' @param openset an integer vector with the indices of classes in the open set (default: \code{c(1)}).
#' @param order a character vector indicating the order of the classes (default: \code{levels(y)}).
#' @param sortid a logical indicating if the indices must be sorted at the output (default: \code{TRUE}).
#' @param formula a formula with the output class and, at least, one input attribute.
#' @param data a data frame in which to interpret the variables in the formula.
#' @param ... other options to pass to the function.
#'
#' @return An object of class \code{ndmodel} with elements:
#' \item{xnoise}{a data frame with the noisy input attributes.}
#' \item{ynoise}{a factor vector with the noisy output class.}
#' \item{numnoise}{an integer vector with the amount of noisy samples per class.}
#' \item{idnoise}{an integer vector list with the indices of noisy samples.}
#' \item{numclean}{an integer vector with the amount of clean samples per class.}
#' \item{idclean}{an integer vector list with the indices of clean samples.}
#' \item{distr}{an integer vector with the samples per class in the original data.}
#' \item{model}{the full name of the noise introduction model used.}
#' \item{param}{a list of the argument values.}
#' \item{call}{the function call.}
#'
#' @references
#' P. H. Seo, G. Kim, and B. Han. \strong{Combinatorial inference against label noise}.
#' In \emph{Advances in Neural Information Processing Systems}, volume 32, pages 1171-1181, 2019.
#' url:\url{https://proceedings.neurips.cc/paper/2019/hash/0cb929eae7a499e50248a3a78f7acfc7-Abstract.html}.
#'
#' @examples
#' # load the dataset
#' data(iris2D)
#'
#' # usage of the default method
#' set.seed(9)
#' outdef <- opes_idnn_ln(x = iris2D[,-ncol(iris2D)], y = iris2D[,ncol(iris2D)],
#' level = 0.4, order = c("virginica", "setosa", "versicolor"))
#'
#' # show results
#' summary(outdef, showid = TRUE)
#' plot(outdef)
#'
#' # usage of the method for class formula
#' set.seed(9)
#' outfrm <- opes_idnn_ln(formula = Species ~ ., data = iris2D,
#' level = 0.4, order = c("virginica", "setosa", "versicolor"))
#'
#' # check the match of noisy indices
#' identical(outdef$idnoise, outfrm$idnoise)
#'
#' @note Noise model adapted from the papers in References.
#'
#' @seealso \code{\link{opes_idu_ln}}, \code{\link{print.ndmodel}}, \code{\link{summary.ndmodel}}, \code{\link{plot.ndmodel}}
#'
#' @name opes_idnn_ln
NULL
###############################################################
###############################################################
###############################################################
#' @export
#' @rdname opes_idnn_ln
opes_idnn_ln.default <- function(x, y, level, openset = c(1), order = levels(y), sortid = TRUE, ...){
######################################################
# check for errors #########
if(!is.data.frame(x)){
stop("argument \"x\" must be a data frame")
}
if(!is.factor(y)){
stop("argument \"y\" must be a factor vector")
}
if(nlevels(y) < 2){
stop("argument \"y\" must have at least 2 levels")
}
if(nrow(x) != length(y)){
stop("number of rows of \"x\" must be equal to length of \"y\"")
}
if(!all(order %in% levels(y)) || length(order) != nlevels(y)){
stop("the elements and legnth of \"order\" must match those of levels(y)")
}
if(any(sapply(x, is.numeric) == FALSE)){
stop("column types of \"x\" must be numeric")
}
######################################################
# introduce noise #########
y <- factor(y, levels = order)
idopen <- which(y %in% order[openset])
idclose <- setdiff(1:nrow(x), idopen)
num_noise <- round(length(idopen)*level)
idx_noise <- sample(x = idopen, size = num_noise, replace = FALSE)
if(sortid)
idx_noise <- sort(idx_noise)
classes <- order
nnoiseclass <- as.vector(table(factor(y[idx_noise], levels = classes)))
names(nnoiseclass) <- classes
distr <- as.vector(table(factor(y, levels = classes)))
names(distr) <- classes
if(num_noise > 0){
rmopen <- setdiff(idopen, idx_noise)
x <- x[-rmopen,]
y <- y[-rmopen]
idx_noise <- which(y %in% order[openset])
idopen <- which(y %in% order[openset])
idclose <- setdiff(1:nrow(x), idopen)
newclasses <- rep(NA, num_noise)
for(i in 1:num_noise){
kmin <- 1
nn <- get.knnx(data = x[idclose,], query = x[idx_noise[i],], k = kmin, algorithm = "brute")$nn.index
nn_cla <- y[idclose][nn]
majcla <- unname(which.max(table(nn_cla)))
newclasses[i] <- majcla
}
newclasses <- order[newclasses]
y[idx_noise] <- newclasses
}
######################################################
# create object of class 'ndmodel' #########
call <- match.call()
call[[1]] <- as.name("opes_idnn_ln")
res <- list(xnoise = x,
ynoise = y,
numnoise = nnoiseclass,
idnoise = list(idx_noise),
numclean = distr-nnoiseclass,
idclean = list(setdiff(1:nrow(x),idx_noise)),
distr = distr,
model = "Open-set ID/nearest-neighbor label noise",
param = list(openset = openset, order = order, sortid = sortid),
call = call
)
class(res) <- "ndmodel"
return(res)
}
###############################################################
###############################################################
###############################################################
#' @export
#' @rdname opes_idnn_ln
#' @importFrom "stats" "model.frame"
opes_idnn_ln.formula <- function(formula, data, ...){
if(!is.data.frame(data)){
stop("argument \"data\" must be a data frame")
}
mf <- model.frame(formula,data)
attr(mf,"terms") <- NULL
x <- mf[,-1]
y <- mf[,1]
res <- opes_idnn_ln.default(x = x, y = y, ...)
res$call <- match.call(expand.dots = TRUE)
res$call[[1]] <- as.name("opes_idnn_ln")
return(res)
}
###############################################################
###############################################################
###############################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.