Nothing
###############################################################
###############################################################
###############################################################
#' @export
sco_con_ln <- function(x, ...) UseMethod("sco_con_ln")
#' Score-based confidence label noise
#'
#' Introduction of \emph{Score-based confidence label noise} into a classification dataset.
#'
#' \emph{Score-based confidence label noise} follows the intuition that hard samples are
#' more likely to be mislabeled. Given the confidence per class of each sample,
#' if it is predicted with a different class with a high probability, it means that
#' it is hard to clearly distinguish the sample from this class. The confidence information is used to compute a mislabeling score for each sample and its potential noisy
#' label. Finally, (\code{level}ยท100)\% of the samples with the highest mislabeling scores
#' are chosen as noisy.
#'
#' @param x a data frame of input attributes.
#' @param y a factor vector with the output class of each sample.
#' @param level a double in [0,1] with the noise level to be introduced.
#' @param sortid a logical indicating if the indices must be sorted at the output (default: \code{TRUE}).
#' @param formula a formula with the output class and, at least, one input attribute.
#' @param data a data frame in which to interpret the variables in the formula.
#' @param ... other options to pass to the function.
#'
#' @return An object of class \code{ndmodel} with elements:
#' \item{xnoise}{a data frame with the noisy input attributes.}
#' \item{ynoise}{a factor vector with the noisy output class.}
#' \item{numnoise}{an integer vector with the amount of noisy samples per class.}
#' \item{idnoise}{an integer vector list with the indices of noisy samples.}
#' \item{numclean}{an integer vector with the amount of clean samples per class.}
#' \item{idclean}{an integer vector list with the indices of clean samples.}
#' \item{distr}{an integer vector with the samples per class in the original data.}
#' \item{model}{the full name of the noise introduction model used.}
#' \item{param}{a list of the argument values.}
#' \item{call}{the function call.}
#'
#' @references
#' P. Chen, J. Ye, G. Chen, J. Zhao, and P. Heng.
#' \strong{Beyond class-conditional assumption: A primary attempt to combat instance-dependent label noise}.
#' In \emph{Proc. 35th AAAI Conference on Artificial Intelligence}, pages 11442-11450, 2021.
#' url:\url{https://ojs.aaai.org/index.php/AAAI/article/view/17363}.
#'
#' @examples
#' # load the dataset
#' data(iris2D)
#'
#' # usage of the default method
#' set.seed(9)
#' outdef <- sco_con_ln(x = iris2D[,-ncol(iris2D)], y = iris2D[,ncol(iris2D)], level = 0.1)
#'
#' # show results
#' summary(outdef, showid = TRUE)
#' plot(outdef)
#'
#' # usage of the method for class formula
#' set.seed(9)
#' outfrm <- sco_con_ln(formula = Species ~ ., data = iris2D, level = 0.1)
#'
#' # check the match of noisy indices
#' identical(outdef$idnoise, outfrm$idnoise)
#'
#' @note Noise model adapted from the papers in References.
#'
#' @seealso \code{\link{mis_pre_ln}}, \code{\link{smam_bor_ln}}, \code{\link{print.ndmodel}}, \code{\link{summary.ndmodel}}, \code{\link{plot.ndmodel}}
#'
#' @name sco_con_ln
NULL
###############################################################
###############################################################
###############################################################
#' @export
#' @rdname sco_con_ln
#' @importFrom "lsr" "expandFactors"
#' @importFrom "nnet" "class.ind"
#' @importFrom "nnet" "nnet"
sco_con_ln.default <- function(x, y, level, sortid = TRUE, ...){
######################################################
# check for errors #########
if(!is.data.frame(x)){
stop("argument \"x\" must be a data frame")
}
if(!is.factor(y)){
stop("argument \"y\" must be a factor vector")
}
if(nlevels(y) < 2){
stop("argument \"y\" must have at least 2 levels")
}
if(level < 0 || level > 1){
stop("argument \"level\" must be in [0,1]")
}
if(nrow(x) != length(y)){
stop("number of rows of \"x\" must be equal to length of \"y\"")
}
######################################################
# introduce noise #########
nit <- 100
x2 <- expandFactors(x)
ideal <- class.ind(y)
resnn <- array(data = NA, dim = c(nit, nrow(x2), ncol(ideal)))
cseed <- sample(x = 1:1000000, size = 1)
for(i in 1:nit){
set.seed(cseed)
model <- nnet(x2, ideal, size = 10, softmax = TRUE, maxit = i, trace = FALSE)
resnn[i,,] <- model$fitted.values
}
# compute mean
S <- array(data = 0, dim = c(nrow(x2), ncol(ideal)))
for(i in 1:nit){
S <- S + resnn[i,,]
}
S <- S/nit
# compute noise score and noisy label for each sample
N <- rep(0, nrow(x))
ynoise <- rep(-1, nrow(x))
for(i in 1:nrow(x)){
c <- as.integer(y[i])
v <- S[i,]
v[c] <- -Inf
N[i] <- max(v)
ynoise[i] <- which.max(v)
}
# select high noise scores
id <- sort(x = N, decreasing = TRUE, index.return = TRUE)$ix
num_noise <- round(nrow(x)*level)
if(num_noise > 0){
idx_noise <- id[1:num_noise]
if(sortid)
idx_noise <- sort(idx_noise)
}
else{
idx_noise <- NULL
}
classes <- levels(y)
nnoiseclass <- as.vector(table(factor(y[idx_noise], levels = classes)))
names(nnoiseclass) <- classes
distr <- as.vector(table(factor(y, levels = classes)))
names(distr) <- classes
# assign noise labels
if(num_noise > 0){
for(i in 1:num_noise){
newcla <- ynoise[idx_noise[i]]
newcla <- levels(y)[newcla]
y[idx_noise[i]] <- newcla
}
}
######################################################
# create object of class 'ndmodel' #########
call <- match.call()
call[[1]] <- as.name("sco_con_ln")
res <- list(xnoise = x,
ynoise = y,
numnoise = nnoiseclass,
idnoise = list(idx_noise),
numclean = distr-nnoiseclass,
idclean = list(setdiff(1:nrow(x),idx_noise)),
distr = distr,
model = "Score-based confidence label noise",
param = list(level = level, sortid = sortid),
call = call
)
class(res) <- "ndmodel"
return(res)
}
###############################################################
###############################################################
###############################################################
#' @export
#' @rdname sco_con_ln
#' @importFrom "stats" "model.frame"
sco_con_ln.formula <- function(formula, data, ...){
if(!is.data.frame(data)){
stop("argument \"data\" must be a data frame")
}
mf <- model.frame(formula,data)
attr(mf,"terms") <- NULL
x <- mf[,-1]
y <- mf[,1]
res <- sco_con_ln.default(x = x, y = y, ...)
res$call <- match.call(expand.dots = TRUE)
res$call[[1]] <- as.name("sco_con_ln")
return(res)
}
###############################################################
###############################################################
###############################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.