tests/examples/example.R

library('opera')  # load the package
set.seed(1)

# Example: find the best one week ahead forecasting strategy (weekly data)
# packages
library(mgcv)

# import data
data(electric_load)
idx_data_test <- 620:nrow(electric_load)
data_train <- electric_load[-idx_data_test, ]
data_test <- electric_load[idx_data_test, ]

# Build the expert forecasts 
# ##########################

# 1) A generalized additive model
gam.fit <- gam(Load ~ s(IPI) + s(Temp) + s(Time, k=3) + 
                 s(Load1) + as.factor(NumWeek), data = data_train)
gam.forecast <- predict(gam.fit, newdata = data_test)

# 2) An online autoregressive model on the residuals of a medium term model

# Medium term model to remove trend and seasonality (using generalized additive model)
detrend.fit <- gam(Load ~ s(Time,k=3) + s(NumWeek) + s(Temp) + s(IPI), data = data_train)
electric_load$Trend <- c(predict(detrend.fit), predict(detrend.fit,newdata = data_test))
electric_load$Load.detrend <- electric_load$Load - electric_load$Trend

# Residual analysis
ar.forecast <- numeric(length(idx_data_test))
for (i in seq(idx_data_test)) {
  ar.fit <- ar(electric_load$Load.detrend[1:(idx_data_test[i] - 1)])
  ar.forecast[i] <- as.numeric(predict(ar.fit)$pred) + electric_load$Trend[idx_data_test[i]]
}

# Aggregation of experts
###########################

X <- cbind(gam.forecast, ar.forecast)
colnames(X) <- c('gam', 'ar')
Y <- data_test$Load

matplot(cbind(Y, X), type = 'l', col = 1:6, ylab = 'Weekly load', xlab = 'Week')


# How good are the expert? Look at the oracles
oracle.convex <- oracle(Y = Y, experts = X, loss.type = 'square', model = 'convex')
plot(oracle.convex)
oracle.convex

# Is a single expert the best over time ? Are there breaks ?
oracle.shift <- oracle(Y = Y, experts = X, loss.type = 'percentage', model = 'shifting')
plot(oracle.shift)
oracle.shift

# Online aggregation of the experts with BOA
#############################################

# Initialize the aggregation rule
m0.BOA <- mixture(model = 'BOA', loss.type = 'square')

# Perform online prediction using BOA There are 3 equivalent possibilities 1)
# start with an empty model and update the model sequentially
m1.BOA <- m0.BOA
for (i in 1:length(Y)) {
  m1.BOA <- predict(m1.BOA, newexperts = X[i, ], newY = Y[i])
}

# 2) perform online prediction directly from the empty model
m2.BOA <- predict(m0.BOA, newexpert = X, newY = Y, online = TRUE)

# 3) perform the online aggregation directly
m3.BOA <- mixture(Y = Y, experts = X, model = 'BOA', loss.type = 'square')

# These predictions are equivalent:
identical(m1.BOA, m2.BOA)  # TRUE
identical(m1.BOA, m3.BOA)  # TRUE

# Display the results
summary(m3.BOA)
plot(m1.BOA) 

Try the opera package in your browser

Any scripts or data that you put into this service are public.

opera documentation built on May 29, 2017, 10:32 p.m.