check_kmo: Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA)...

View source: R/check_factorstructure.R

check_kmoR Documentation

Kaiser, Meyer, Olkin (KMO) Measure of Sampling Adequacy (MSA) for Factor Analysis


Kaiser (1970) introduced a Measure of Sampling Adequacy (MSA), later modified by Kaiser and Rice (1974). The Kaiser-Meyer-Olkin (KMO) statistic, which can vary from 0 to 1, indicates the degree to which each variable in a set is predicted without error by the other variables.


check_kmo(x, ...)



A dataframe.


Arguments passed to or from other methods.


A value of 0 indicates that the sum of partial correlations is large relative to the sum correlations, indicating factor analysis is likely to be inappropriate. A KMO value close to 1 indicates that the sum of partial correlations is not large relative to the sum of correlations and so factor analysis should yield distinct and reliable factors.

Kaiser (1974) suggested that KMO > .9 were marvelous, in the .80s, meritorious, in the .70s, middling, in the .60s, mediocre, in the .50s, miserable, and less than .5, unacceptable. Hair et al. (2006) suggest accepting a value > 0.5. Values between 0.5 and 0.7 are mediocre, and values between 0.7 and 0.8 are good.

This function is strongly inspired by the KMO function in the psych package (Revelle, 2016). All credits goes to its author.


A list of indices related to KMO.


  • Revelle, W. (2016). How To: Use the psych package for Factor Analysis and data reduction.

  • Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401-415.

  • Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and psychological measurement, 34(1), 111-117.

  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.



performance documentation built on Jan. 12, 2023, 9:07 a.m.