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Abstract

We describe a new library named picasso 1, which implements a unified framework of
pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse
linear regression, sparse logistic regression, sparse Poisson regression and scaled sparse
linear regression) combined with efficient active set selection strategies. Besides, the library
allows users to choose different sparsity-inducing regularizers, including the convex `1,
nonvoncex MCP and SCAD regularizers. The library is coded in C++ and has user-friendly
R and Python wrappers. Numerical experiments demonstrate that picasso can scale up
to large problems efficiently.

1. Overview

Sparse Learning arises due to the demand of analyzing high-dimensional data such as high-
throughput genomic data (Neale et al., 2012) and functional Magnetic Resonance Imaging
(Liu et al., 2015). The pathwise coordinate optimization is undoubtedly one the of the
most popular solvers for a large variety of sparse learning problems. By leveraging the
solution sparsity through a simple but elegant algorithmic structure, it significantly boosts
the computational performance in practice (Friedman et al., 2007). Some recent progresses
in (Zhao et al., 2017; Li et al., 2017) establish theoretical guarantees to further justify its
computational and statistical superiority for both convex and nonvoncex sparse learning,
which makes it even more attractive to practitioners.

∗. Jason Ge and Xingguo Li contributed equally. Tuo Zhao is the corresponding author.
1. More details can be found in our Github page: https://github.com/jasonge27/picasso
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We recently developed a new library named picasso, which implements a unified toolkit
of pathwise coordinate optimization for solving a large class of convex and nonconvex reg-
ularized sparse learning problems. Efficient active set selection strategies are provided to
guarantee superior statistical and computational preference. Specifically, we implement
sparse linear regression, sparse logistic regression, sparse Poisson regression and scaled
sparse linear regression (Tibshirani, 1996; Belloni et al., 2011; Sun and Zhang, 2012). The
options of regularizers include the `1, MCP, and SCAD regularizers (Fan and Li, 2001;
Zhang, 2010). Unlike existing libraries implementing heuristic optimization algorithms such
as ncvreg or glmnet (Breheny, 2013; Friedman et al., 2010), our implemented algorithm
picasso have strong theoretical guarantees that it attains a global linear convergence to a
unique sparse local optimum with optimal statistical properties (e.g. minimax optimality
and oracle properties). See more details in Zhao et al. (2017); Li et al. (2017).

2. Algorithm Design and Implementation

The algorithm implemented in picasso is mostly based on the generic pathwise coordinate
optimization framework proposed by Zhao et al. (2017); Li et al. (2017), which integrates the
warm start initialization, active set selection strategy, and strong rule for coordinate prese-
lection into the classical coordinate optimization. The algorithm contains three structurally
nested loops as shown in Figure 1:

(1) Outer loop: The warm start initialization, also referred to as the pathwise optimiza-
tion scheme, is applied to minimize the objective function in a multistage manner using a
sequence of decreasing regularization parameters, which yields a sequence of solutions from
sparse to dense. At each stage, the algorithm uses the solution from the previous stage as
initialization.

(2) Middle loop: The algorithm first divides all coordinates into active ones (active set)
and inactive ones (inactive set) by a so-called strong rule based on coordinate gradient
thresholding (Tibshirani et al., 2012). Then the algorithm calls an inner loop to optimize
the objective, and update the active set based on efficient active set selection strategies.
Such a routine is repeated until the active set no longer changes

(3) Inner loop: The algorithm conducts coordinate optimization (for sparse linear regres-
sion) or proximal Newton optimization combined with coordinate optimization (for sparse
logistic regression, Possion regression, scaled sparse linear regression, sparse undirected
graph estimation) only over active coordinates until convergence, with all inactive coordi-
nates staying zero values. The active coordinates are updated efficiently using an efficient
“naive update” rule that only operates on the non-zero coefficients. Better efficiency is
achieved by the “covariance update” rule. See more details in (Friedman et al., 2010). The
inner loop terminates when the successive descent is within a predefined numerical precision.

The warm start initialization, active set selection strategies, and strong rule for co-
ordinate preselection significantly boost the computational performance, making pathwise
coordinate optimization one of the most important computational frameworks for sparse
learning. The numerical evaluations show that picasso is highly scalable and efficient.

The library is implemented in C++ with the memory optimized using sparse matrix out-
put, and called from R and Python by user-friendly interfaces. Linear algebra is supported
by the Eigen3 library (Guennebaud et al., 2010) for portable high performance computation.
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The implementation is modularized so that the algorithm in src/solver/actnewton.cpp

works with popular sparsity-inducing regularizer functions and any convex objective func-
tion that exhibits restricted strong convexity property (Zhao et al., 2017). Users can easily
extend the package by writing customized objective function subclass and regularizer func-
tion subclass following the virtual function interfaces of class ObjFunction and class

RegFunction in include/picasso/objective.hpp.
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Figure 1: The pathwise coordinate optimization framework with 3 nested loops: (1) Warm
start initialization; (2) Active set selection, and strong rule for coordinate preselection; (3)
Active coordinate minimization.

3. Example of R User Interface

We illustrate the user interface by analyzing the eye disease data set in picasso.

> library(picasso); data(eyedata) # Load the data set

> out1 = picasso(x,y,method="l1",type.gaussian="naive",nlambda=20,

+ lambda.min.ratio=0.2) # Lasso

> out2 = picasso(x,y,method="mcp", gamma = 1.25, prec=1e-4) # MCP regularizer

> plot(out1); plot(out2) # Plot solution paths

The program automatically generates a sequence of regularization parameters and esti-
mate the corresponding solution paths based on the `1 and MCP regularizers respectively.
For the `1 regularizer, we set the number of regularization parameters as 20, and the min-
imum regularization parameter as 0.2*lambda.max. For the MCP regularizer, we set the
concavity parameter as γ = 1.25, and the pre-defined accuracy as 10−4. Here nlambda and
lambda.min.ratio are omitted, and therefore set by the default values (nlambda=100 and
lambda.min.ratio=0.05). We further plot two solution paths in Figure 2.

4. Numerical Simulation

To demonstrate the superior efficiency of our library, we compare picasso with a popular R
library ncvreg (version 3.9.1) for nonconvex regularized sparse regression, the most popular
R library glmnet (version 2.0-13) for convex regularized sparse regression, and two R libraries
scalreg-v1.0 and flare-v1.5.0 for scaled sparse linear regression. All experiments are
evaluated on an Intel Core CPU i7-7700k 4.20GHz and under R version 3.4.3. Timings of
the CPU execution are recored in seconds and averaged over 10 replications on a sequence
of 100 regularization parameters. All algorithms are compared on the same regularization
path and the convergence threshold are adjusted so that similar objective gaps are achieved.

We compare the timing performance and the optimization performance in Table 1. We
choose the problem size to be (n = 3000, d = 30000), where n is the number of observation
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and d is the dimension of the parameter vector. We tests the algorithms for both well-
conditioned cases and ill-conditioned cases. The details of data generation can be found in
the R library vignette. Here is our summary:

(1) For sparse linear regression using any regularizer and sparse logistic regression using
the `1 regularizer, all libraries achieve almost identical optimization objective values, and
picasso slightly outperforms glmnet and ncvreg in the timing performance.

(2) For sparse logistic regression using nonconvex regularizers, picasso achieves comparable
objective value with ncvreg, and significantly outperforms ncvreg in timing performance.
We also remark that picasso performs stably for various settings and tuning parameters.
However, ncvreg may converge very slow or fail to converge for sparse logistic regression
using nonconvex regularizers, especially when the tuning parameters are relatively small
(corresponding to denser estimators), as the ill-conditioned SCAD case shows.

(3) For scaled Lasso, in order to make other competitors (flare and scalreg) converges
in resonable time, we swtich to a smaller problem size (n = 1000, d = 10000). We see that
picasso much more time saving than flare and scalreg.

Table 1: Average timing performance (in sec-
onds) with standard errors in the parentheses
and achieved objective values.

Sparse Linear Regression

well-conditioned ill-conditioned

`1
picasso 1.61(0.03)s 27.691 3.62(0.02)s 32.543
glmnet 4.15(0.03)s 27.692 9.43(0.01)s 32.537
ncvreg 5.92(0.01)s 27.690 6.66(0.01)s 32.536

SCAD
picasso 1.56(0.01)s 27.668 3.74(0.01)s 33.133
ncvreg 5.61(0.01)s 27.673 7.05(0.01)s 33.156

MCP
picasso 1.47(0.02)s 27.161 1.89(0.02)s 32.468
ncvreg 4.07(0.03)s 27.161 2.56(0.01)s 32.468

Sparse Logistic Regression

`1
picasso 2.03(0.01)s 0.363 2.10(0.03)s 0.327
glmnet 16.32(0.12)s 0.363 20.31(0.02)s 0.327
ncvreg 4.04(0.01)s 0.363 62.89(0.04)s 0.327

SCAD
picasso 4.25(0.01)s 0.227 4.35(0.02)s 0.172
ncvreg 11.47(0.04)s 0.278 error (>300s)

MCP
picasso 4.32(0.01)s 0.221 4.38(0.02)s 0.165
ncvreg 9.37(0.08)s 0.248 6.99(0.01)s 0.242

Scaled Lasso

`1
picasso 0.36(0.01)s 4.454 0.15(0.01)s 5.495
flare 5.23(0.06)s 5.188 297.36(2.77)s 5.959

scalreg 40.20(0.63)s 4.492 49.12(10.98)s 5.507

Figure 2: The solution paths of `1
(up) and MCP (down) regularizers.

5. Conclusion

The picasso library demonstrates significantly improved computational and statistical per-
formance over existing libraries for nonconvex regularized sparse learning such as ncvreg.
Besides, picasso also shows improvement over the popular libraries for convex regularized
sparse learning such as glmnet. Overall, the picasso library has the potential to serve as
a powerful toolbox for high dimensional sparse learning. We will continue to maintain and
support this library.
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