Nothing
vegStructStarter <- function(x, db, grpBy_quo = NULL, polys = NULL,
returnSpatial = FALSE, landType = 'forest',
method = 'TI', lambda = 0.5, areaDomain = NULL,
byPlot = FALSE, totals = FALSE, nCores = 1,
remote = NULL, mr) {
# Read required data and prep the database ------------------------------
reqTables <- c('PLOT', 'P2VEG_SUBP_STRUCTURE', 'SUBP_COND', 'COND',
'POP_PLOT_STRATUM_ASSGN', 'POP_ESTN_UNIT', 'POP_EVAL',
'POP_STRATUM', 'POP_EVAL_TYP', 'POP_EVAL_GRP', 'PLOTGEOM')
# If remote, read in state by state. Otherwise, drop all unnecessary tables.
db <- readRemoteHelper(x, db, remote, reqTables, nCores)
# If the object was clipped
if ('prev' %in% names(db$PLOT)) {
# Filter to only include the most recent plot measurements
db$PLOT <- dplyr::filter(db$PLOT, prev == 0)
}
# Handle TX issues: we only keep inventory years that are present in
# BOTH EAST AND WEST TX
db <- handleTX(db)
# Check some of the inputs ----------------------------------------------
# polys -----------------------------
if (!is.null(polys) &
dplyr::first(class(polys)) %in%
c('sf', 'SpatialPolygons', 'SpatialPolygonsDataFame') == FALSE) {
stop("polys must be a spatial polygons object of class sp or sf.")
}
# landType --------------------------
if (landType %in% c('timber', 'forest') == FALSE) {
stop('landType must be one of: "forest" or "timber".')
}
# db required tables ----------------
if (any(reqTables %in% names(db) == FALSE)) {
missT <- reqTables[reqTables %in% names(db) == FALSE]
stop(paste('Tables', paste(as.character(missT), collapse = ', '),
'not found in object db.'))
}
# method ----------------------------
if (stringr::str_to_upper(method) %in% c('TI', 'SMA', 'LMA', 'EMA',
'ANNUAL') == FALSE) {
warning(paste('Method', method, 'unknown. Defaulting to Temporally Indifferent (TI).'))
}
# Other basic variable prep ---------------------------------------------
# Join PLOT with PLOTGEOM to allow plot-level geographic attributes to be used
# in grpBy statements
# First need to get rid of other columns in PLOT in PLOTGEOM.
db$PLOTGEOM <- db$PLOTGEOM %>%
dplyr::select(-STATECD, -INVYR, -UNITCD, -COUNTYCD, -PLOT, -LAT, -LON,
-dplyr::starts_with('CREATED'), -dplyr::starts_with('MODIFIED'))
db$PLOT <- db$PLOT %>%
dplyr::left_join(db$PLOTGEOM, by = 'CN')
# Get a plot CN and a new pltID that gives a unique ID to each plot
# PLT_CN is UNITCD, STATECD, COUNTYCD, PLOT, and INVYR
db$PLOT <- db$PLOT %>%
dplyr::mutate(PLT_CN = CN,
pltID = stringr::str_c(UNITCD, STATECD, COUNTYCD, PLOT, sep = '_'))
# Reduce the sample right off the bat to only use plots sampled for veg
# 0 are plots that are not part of P2 veg sample.
db$PLOT <- db$PLOT %>%
dplyr::filter(P2VEG_SAMPLING_STATUS_CD %in% 1:2)
# Convert grpBy to character
grpBy <- grpByToChar(db[!c(names(db) %in% c('TREE'))], grpBy_quo)
# Unique plot ID through time (pltID)
if (byPlot) {
grpBy <- c('pltID', grpBy)
}
# Add variables to grouping
grpBy <- c(grpBy, 'LAYER', 'GROWTH_HABIT')
# Adding names of id columns for layer and growth habit
db$P2VEG_SUBP_STRUCTURE <- db$P2VEG_SUBP_STRUCTURE %>%
dplyr::mutate(LAYER = dplyr::case_when(is.na(LAYER) ~ NA_character_,
LAYER == 1 ~ '0 to 2.0 feet',
LAYER == 2 ~ '2.1 to 6.0 feet',
LAYER == 3 ~ '6.1 to 16.0 feet',
LAYER == 4 ~ 'Greater than 16 feet',
LAYER == 5 ~ 'Areal: all layers'),
GROWTH_HABIT = dplyr::case_when(is.na(GROWTH_HABIT_CD) ~ NA_character_,
GROWTH_HABIT_CD == 'TT' ~ 'Tally tree',
GROWTH_HABIT_CD == 'NT' ~ 'Non-tally tree',
GROWTH_HABIT_CD == 'SH' ~ 'Shrubs/vines',
GROWTH_HABIT_CD == 'FB' ~ 'Forbs',
GROWTH_HABIT_CD == 'GR' ~ 'Graminoids'))
# Intersect plots with polygons if polygons are given
if (!is.null(polys)) {
# Add shapefile names to grpBy
# Determine the name of the sf column. This assumes the user has not
# manually changed the "sf_column" attribute. By default, this is the
# same as the sf column. This is needed, because there is no single
# name for the sf column. It is usually geom or geometry, but that
# is not always the case.
sfCol <- attr(polys, 'sf_column')
grpBy <- c(grpBy, names(polys)[names(polys) != sfCol])
# Do the intersection
db <- arealSumPrep2(db, grpBy, polys, nCores, remote)
# If there's nothing there, skip the state
if (is.null(db)) return('no plots in polys')
}
# Update grpBy if returning spatial points.
if (byPlot & returnSpatial) {
grpBy <- c(grpBy, 'LON', 'LAT')
}
# Build a domain indicator for each observation (1 or 0) ----------------
# Land type
db$COND$landD <- landTypeDomain(landType, db$COND$COND_STATUS_CD,
db$COND$SITECLCD, db$COND$RESERVCD)
# Spatial boundary (determine which of the plots fall within the polygons
# supplied in polys)
if (!is.null(polys)) {
db$PLOT$sp <- ifelse(!is.na(db$PLOT$polyID), 1, 0)
} else {
# If no polys, use all plots.
db$PLOT$sp <- 1
}
# User defined domain indicator for area (ex. specific forest type)
db <- udAreaDomain(db, areaDomain)
# Handle population tables ----------------------------------------------
# Filtering out all inventories that are not relevant to the current
# estimation type. If using estimator other than TI, handle the differences in
# P2POINTCNT and in assigning YEAR column (YEAR = END_INVYR if method = 'TI')
pops <- handlePops(db, evalType = c('CURR'), method, mr)
# A lot of states do their stratification in such a way that makes it impossible
# to estimate variance of annual panels with the post-stratified estimator. That is,
# the number of plots within a panel within a stratum is less than 2. When this happens
# merge strata so that all have at least two observations.
if (stringr::str_to_upper(method) %in% c('SMA', 'LMA', 'EMA', 'ANNUAL') & !byPlot) {
pops <- mergeSmallStrata(db, pops)
}
# Prep the tree list ----------------------------------------------------
# Narrow the tables to the necessary variables.
# Which grpByNames are in which table? Helps us subset below.
# grpBy names in PLOT
grpP <- names(db$PLOT)[names(db$PLOT) %in% grpBy]
# grpBy names in COND
grpC <- names(db$COND)[names(db$COND) %in% grpBy &
!c(names(db$COND) %in% grpP)]
# PLOT ------------------------------
db$PLOT <- db$PLOT %>%
# Dropping irrelevant rows and columns
dplyr::select(PLT_CN, STATECD, MACRO_BREAKPOINT_DIA, INVYR, MEASYEAR,
PLOT_STATUS_CD, dplyr::all_of(grpP), sp, COUNTYCD) %>%
# Drop non-forested plots, and those otherwise outside our domain of interest.
dplyr::filter(PLOT_STATUS_CD == 1 & sp == 1) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% pops$PLT_CN)
# COND ------------------------------
db$COND <- db$COND %>%
dplyr::select(PLT_CN, CONDPROP_UNADJ, PROP_BASIS, COND_STATUS_CD, CONDID,
dplyr::all_of(grpC), aD, landD) %>%
# Drop non-forested plots, and those otherwise outside our domain of interest
dplyr::filter(aD == 1 & landD == 1) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% pops$PLT_CN)
# SUBP_COND -------------------------
db$SUBP_COND <- db$SUBP_COND %>%
dplyr::select(PLT_CN, SUBP, CONDID, SUBPCOND_PROP) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% pops$PLT_CN)
# P2VEG_SUBP_STRUCTURE --------------
db$P2VEG_SUBP_STRUCTURE <- db$P2VEG_SUBP_STRUCTURE %>%
dplyr::select(PLT_CN, COVER_PCT, SUBP, CONDID, LAYER, GROWTH_HABIT) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% pops$PLT_CN)
# Separate area grouping names from tree grouping names
if (!is.null(polys)){
aGrpBy <- grpBy[grpBy %in% c(names(db$PLOT), names(db$COND), names(polys))]
} else {
aGrpBy <- grpBy[grpBy %in% c(names(db$PLOT), names(db$COND))]
}
# Full condition list
data <- db$PLOT %>%
dplyr::left_join(db$COND, by = c('PLT_CN')) %>%
left_join(db$SUBP_COND, by = c('PLT_CN', 'CONDID')) %>%
left_join(db$P2VEG_SUBP_STRUCTURE, by = c("PLT_CN", "CONDID", 'SUBP'))
# Comprehensive indicator function
data$aDI <- data$landD * data$aD * data$sp
# Plot-level summaries --------------------------------------------------
if (byPlot) {
grpBy <- c('YEAR', grpBy)
# Create a list of symbols for the grpBy statements
grpSyms <- rlang::syms(grpBy)
aGrpSyms <- rlang::syms(aGrpBy)
# Plot-level estimates
# Area
a <- data %>%
dplyr::distinct(PLT_CN, CONDID, .keep_all = TRUE) %>%
# Convert to a lazy data table for quicker analysis.
dtplyr::lazy_dt() %>%
# Note the use of !!! to inject aGrpSyms back into an evaluation context.
dplyr::group_by(PLT_CN, !!!aGrpSyms) %>%
# Calculate proportion of area in the plot that meets the current area domain
dplyr::summarize(PROP_FOREST = sum(CONDPROP_UNADJ * aDI, na.rm = TRUE)) %>%
# Convert to data frame
as.data.frame()
# Areal coverage
t <- data %>%
# Set the YEAR to the measurement year for plot-level estimates.
dplyr::mutate(YEAR = MEASYEAR) %>%
dplyr::distinct(PLT_CN, CONDID, SUBP, LAYER, GROWTH_HABIT, .keep_all = TRUE) %>%
dtplyr::lazy_dt() %>%
dplyr::group_by(!!!grpSyms, PLT_CN, SUBP) %>%
dplyr::summarize(cover = sum(COVER_PCT/100 * SUBPCOND_PROP * aDI, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::group_by(PLT_CN, !!!grpSyms) %>%
dplyr::summarize(PROP_COVER = mean(cover, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
as.data.frame() %>%
dplyr::left_join(a, by = c('PLT_CN', aGrpBy)) %>%
dplyr::distinct()
# Make it spatial if the user wants it.
if (returnSpatial) {
t <- t %>%
dplyr::filter(!is.na(LAT) & !is.na(LON)) %>%
sf::st_as_sf(coords = c('LON', 'LAT'),
crs = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')
grpBy <- grpBy[grpBy %in% c('LAT', 'LON') == FALSE]
}
out <- list(tEst = t, aEst = NULL, grpBy = grpBy, aGrpBy = aGrpBy)
} else {
# Population estimation -----------------------------------------------
# Create a list of symbols for the grpBy statements
grpSyms <- rlang::syms(grpBy)
aGrpSyms <- rlang::syms(aGrpBy)
# Condition list
a <- data %>%
# Will be lots of trees here, so CONDPROP is listed multiple times, the
# distinct is needed to just get those distinct ones.
# Adding PROP_BASIS so we can handle adjustment factors at strata level.
dplyr::distinct(PLT_CN, CONDID, .keep_all = TRUE) %>%
dplyr::mutate(fa = CONDPROP_UNADJ * aDI) %>%
dplyr::select(PLT_CN, AREA_BASIS = PROP_BASIS, CONDID, !!!aGrpSyms, fa)
# Tree list
t <- data %>%
dplyr::distinct(PLT_CN, CONDID, SUBP, LAYER, GROWTH_HABIT, .keep_all = TRUE) %>%
dtplyr::lazy_dt() %>%
dplyr::group_by(!!!grpSyms, PLT_CN, PROP_BASIS, CONDID, CONDPROP_UNADJ) %>%
dplyr::summarize(cover = sum(COVER_PCT/100 * SUBPCOND_PROP * aDI * CONDPROP_UNADJ,
na.rm = TRUE) / 4) %>%
dplyr::ungroup() %>%
dplyr::rename(AREA_BASIS = PROP_BASIS) %>%
as.data.frame()
# Sum variable(s) up to plot-level and adjust for non-response
tPlt <- sumToPlot(t, pops, grpBy)
aPlt <- sumToPlot(a, pops, aGrpBy)
# Add YEAR to groups
grpBy <- c('YEAR', grpBy)
aGrpBy <- c('YEAR', aGrpBy)
# Sum variable(s) up to strata then estimation unit level
eu.sums <- sumToEU(db, tPlt, aPlt, pops, grpBy, aGrpBy, method, lambda)
tEst <- eu.sums$x
aEst <- eu.sums$y
out <- list(tEst = tEst, aEst = aEst, grpBy = grpBy, aGrpBy = aGrpBy)
} # Population or plot-level estimation
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.