R/BACON-alg.R

Defines functions .lmBACON mvBACON BACON

Documented in BACON .lmBACON mvBACON

#### From  Atanassios KONDYLIS  @ uni ne . ch
####  15 Dec 2005     --> see ./BACON-alg_email.txt
####


BACON <- function(x, y = NULL, intercept = TRUE,
                  m = min(collect * p, n * 0.5),
                  init.sel = c("Mahalanobis", "dUniMedian", "random", "manual"),
                  man.sel, init.fraction = 0, collect = 4, alpha = 0.95,
		  maxsteps = 100, verbose = TRUE)
{
    ## This S-Plus function performs an outlier identification
    ## algorithm to the data in the x array [n x p] and y vector [n]
    ## followin the lines described by Hadi et al. for their
    ## BACON outlier procedure.
    ##
    ## Ref:  Billor, N., Hadi, A. S., and Velleman , P. F. (2000),
    ##	     "BACON: Blocked Adaptive Computationally-Efficient
    ##	     Outlier Nominators,"
    ##	     Computational Statistics & Data Analysis, (in press)
    ##
    ## x:	 a multivariate matrix of dimension [n x p]
    ##		 considered as containing no missing values
    ## y:	 the response array [n] for the x data
    ## intercept: a logical indicating if an intercept has to be used
    ##		 for the regression
    ## init.sel: the initial selection mode; implemented modes are:
    ##	     "Mah" -> based on Mahalanobis distance (default)
    ##	     "dis" -> based on the distances from the medians
    ##	     "ran" -> based on a random selection
    ##	     "man" -> based on manual selection
    ##		 in this case the vector 'man.sel' which contains
    ##		 the indices of the selected observations
    ##		 must be given.
    ##	     "Mah" and "dis" are proposed by Hadi while "ran" and "man"
    ##	     were implemented in order to study the behaviour of BACON.
    ## init.fraction: if this parameter is > 0 then the tedious steps
    ##		 of selecting the initial subset are skipped and
    ##		 an initial subset of size n * init.fraction is
    ##		 chosen (with smallest dis)
    ## collect:	 a factor chosen by the user to define the size of
    ##		 the initial subset (p * collect)
    ## alpha:	 significance level
    ## maxsteps: the maximal number of iteration steps
    ##		 (to prevent infinite loops)
    ## verbose: prints messages on the standard output in order
    ##		 to inform the user about the progress
    ##
    ## Written 25.05.01 by U. Oetliker for S-Plus 5.1 (Unix).
    ## Modified 28.05.01 / 31.05.01 / 01.06.01 / 09.06.01
    ##	 10.06.01 / 17.06.01
    ##
    ## 'U. Oetliker' = Ueli Oetliker --- SFSO (Swiss Federal Statistical Office)

    if(is.vector(x))
	x <- as.matrix(x)

    n <- nrow(x)
    p <- ncol(x)
    stopifnot(n > 0, p > 0, n > p, n >= m, m > 0,
              0 < alpha, alpha < 1)
    mvB <- mvBACON(x, collect=collect, m=m,
                   alpha=alpha, init.sel=init.sel, man.sel=man.sel,
                   maxsteps=maxsteps, verbose=verbose)
    if(!is.null(y)) { ## regression
	regB <- .lmBACON(x, y, intercept, init.dis = mvB$dis,
			 init.fraction=init.fraction, collect=collect,
			 alpha=alpha, maxsteps=maxsteps, verbose=verbose)
	list(subset   = regB$ subset
           , tis      = regB$ tis
           , mv.subset= mvB $ subset
           , mv.dis   = mvB $ dis
           , steps    = c(mv = mvB$steps, lm = regB$steps)
             )
    } else ## multivariate
        mvB
} # end{ BACON() }


mvBACON <-
    function(x, collect = 4, m = min(collect * p, n * 0.5), alpha = 0.95,
             init.sel = c("Mahalanobis", "dUniMedian", "random", "manual"),
             man.sel, maxsteps = 100, allowSingular = FALSE, verbose = TRUE)
{
    ## docu: --> ../man/mvBACON.Rd
    ##                  ~~~~~~~~~~  help file

    ## Written 25.05.01 by U. Oetliker for S-Plus 5.1 (Unix).
    ## Modified 28.05.01 / 31.05.01 / 01.06.01 / 09.06.01 / 10.06.01

    ## more Modifications in porting to R : Martin Maechler, 2009-05 ++

    trace1 <- function(i, r, n)
    {
	cat("MV-BACON (subset no. ", i, "): ", r,
	    " of ", n, " (", round(r/n*100, digits = 2), " %)",
	    sep = "", fill = TRUE)
    }

    chiCrit <- function(n, p, r, alpha)
    {
	h <- (n + p + 1) / 2
	chr <- max(0, (h - r) / (h + r))
	cnp <- 1 + (p + 1) / (n - p) + 2 / (n - 1 - 3*p)
	cnpr <- cnp + chr
	## return
        cnpr * sqrt( qchisq(alpha / n, p, lower.tail = FALSE) )
    }

    init.sel <- match.arg(init.sel)

    n <- nrow(x)
    p <- ncol(x)
    stopifnot(n > p, p > 0,  0 < alpha, alpha < 1)

    ordered.indices <-
        switch(init.sel,
               "Mahalanobis" = {
                   order(mahalanobis(x, center = colMeans(x), cov = var(x)))
               },
               "random" = sample(n),
               "manual" = {
                   m <- length(man.sel)
                   stopifnot(is.numeric(man.sel),
                             1 <= man.sel, man.sel <= n,
                             man.sel == as.integer(man.sel))
                   c(man.sel, c(1:n)[-man.sel])
               },
               "dUniMedian" = {
                   x.centr <- sweep(x, 2, colMedians(x))
                   order(mahalanobis(x.centr, 0, cov(x.centr)))
               },
               ## otherwise:
               stop("invalid 'init.sel' -- should not happen; please report!")
               )
    m <- as.integer(m)
    stopifnot(n >= m, m > 0)

    ordered.x <- x[ordered.indices, , drop = FALSE]
    ## FIXME{MM}: qr(.) is used to determine rank -- *not* state of the art
    ## see Matrix::rankMatrix
    while (m < n && p > (rnk <- qr(var(ordered.x[1:m, , drop = FALSE]))$rank))
	m <- m + 1L
    if(verbose) cat("rank(ordered.x[1:m,] >= p  ==> chosen m = ", m, "\n")
    if(rnk < p && !allowSingular)
        stop("matrix-rank ( x[1:m,] ) < p  for all m <= n")

    subset <- 1:n %in% ordered.indices[1:m]

    presubset <- rep(FALSE, n)
    converged <- FALSE
    steps <- 1L
    repeat {
        r <- sum(subset)
        if(verbose) trace1(steps, r, n)
        x. <- x[subset, , drop = FALSE]
	center <- colMeans(x.)
	cov <- var(x.)
	dis <- sqrt(mahalanobis(x, center, cov))
        converged <- !any(xor(presubset, subset))
        if(converged)
            break
	##print(dis)
	presubset <- subset
	limit <- chiCrit(n, p, r, alpha)
	subset <- dis < limit
	steps <- steps + 1L
        if (steps > maxsteps)
            break
    }
    if(steps > maxsteps)
        warning("basic subset has not converged in ", maxsteps, " steps")

    list(dis = dis, subset = subset, center = center, cov = cov,
         steps = steps, limit = limit, converged = converged)
} # end{ mvBACON() }


## exported, even though auxiliary to BACON() :
.lmBACON <- function(x, y, intercept = TRUE, init.dis,
                    init.fraction = 0, collect = 4, alpha = 0.95,
                    maxsteps = 100, verbose = TRUE)
{
    ## This function performs the regression part of the
    ## outlier identification algorithm described by Hadi et al.
    ## for their BACON outlier procedure.
    ##
    ## Ref:  Billor, N., Hadi, A. S., and Velleman , P. F. (2000),
    ##	     "BACON: Blocked Adaptive Computationally-Efficient
    ##	     Outlier Nominators,"
    ##	     Computational Statistics & Data Analysis, (in press)
    ##
    ## x:	 a multivariate matrix of dimension [n x p]
    ##		 considered as containing no missing values
    ## y:	 the response array [n] for the x data
    ## intercept: a logical indicating if an intercept has to be used
    ##		 for the regression
    ## init.dis: the distances of the x matrix used for the initial
    ##		 subset determined by the mvBACON
    ## init.fraction: if this parameter is > 0 then the tedious steps
    ##		 of selecting the initial subset are skipped and
    ##		 an initial subset of size n * init.fraction is
    ##		 chosen (with smallest dis)
    ## collect:	 a factor chosen by the user to define the size of
    ##		 the initial subset (p * collect)
    ## alpha:	 significance level
    ## maxsteps: the maximal number of iteration steps
    ##		 (to prevent infinite loops)
    ## verbose: prints messages on the standard output in order
    ##		 to inform the user about the progress
    ##
    ## Written 09.06.01 by U. Oetliker for S-Plus 5.1 (Unix).
    ## Modified 10.06.01

    ## Diagnosing "Hii" bug: Daniel Weeks <weeks at pitt dot edu>
    ## Speed up GiveTis() by Martin Maechler

    ## INTERNAL FUNCTIONS OF .lmBACON :

    trace1 <- function(i, r, n,
                       init.steps = FALSE, skip.init = FALSE) {
        cat("Reg-BACON (", if(init.steps) "init ", "subset no. ", i,
            if(skip.init) " after skipping init", "): ",
            r, " of ", n, " (", round(r/n*100, digits = 2), " %)",
            sep = "", fill = TRUE)
    }

    GiveTis <- function(x, y, subset, ordered.x, ordered.y, m = 1L, check.rank = FALSE)
    {
	## This function calculates the t(i)s
	## for each observation of the data set y ~ x.
	## tis = resid / [sigmahatm * sqrt(1 - PP)]  for tis \in the subset
	## tis = resid / [sigmahatm * sqrt(1 + PP)]  for tis \in the rest
	## with PP = xiT(xmTxm)-1xiT
	## resid = yi - xiTbetahatm
	##
	## betahatm = (xTx)-1xTy
	##
	## sigmahatm = sqrt(s2)
	##   s2 = SSE/(n-p)
	##   SSE = eTe
	##   e = (In - PP)y = y - PPy = residuals
	##   PP = x(xTx)-1xT
	##
	## subset is a logical vector of length n
	## indicating belonging to the subset
	##
	## Written 09.06.01 by U. Oetliker for S-Plus 5.1 (Unix).
	##
	n <- nrow(x)
	p <- ncol(x)

	if(check.rank) {
	    while (m < n && p > qr(ordered.x[1:m,,drop = FALSE])$rank)
		m <- m + 1L
	    xm <- ordered.x[1:m,, drop = FALSE]
	    ym <- ordered.y[1:m]
	} else {
	    xm <- ordered.x
	    ym <- ordered.y
	}
	## force(ym)# "fix" codetools
	nm <- nrow(xm)
        stopifnot(is.matrix(xm)) ## xm  <- as.matrix(xm)

	fit.m <- .lm.fit(xm, ym) ## lm(ym ~ xm[,1:ncol(xm)] -1)
	betahatm <- fit.m$coefficients
	x  <- as.matrix(x)
	resid <- y - as.vector(x %*% betahatm)

	em <- fit.m$residuals
	sigmahatm <- sqrt(sum(em * em) / (nm - p))
	## Hii <- hat(fit.m$qr) # lm.influence(fit.m, do.coef=FALSE) $ hat
        ## xxI <- solve(crossprod(xm)) # the same should be more stable:
        xxI <- chol2inv(qr.R(structure(fit.m, class="qr")))
        Hii <- diag(x %*% tcrossprod(xxI, x)) # = diag(x %*% xxI %*% t(x))
	sqroot <- 1 + (1 - 2*subset) * Hii # = (1 - Hii) iff subset; (1 + Hii) otherwise
	tis <- resid / (sigmahatm * sqrt(sqroot))
	list(m = m, tis = tis)
    }## end{ GiveTis }

    ## Begin  .lmBACON ------------------------------------------------------
    ordered.indices <- order(init.dis)
    if(intercept)
	x <- cbind(1, x)
    n <- nrow(x)
    p <- ncol(x)
    steps <- 0L

    ordered.x <- x[ordered.indices, , drop = FALSE]
    ordered.y <- y[ordered.indices]
    skip.init <- (init.fraction > sqrt(.Machine$double.eps))
    ## size of initial subset [ 4*p by default ] :
    m <- as.integer(if(skip.init) round(init.fraction * n) else collect * p)
    if(m <= 0) {
	message(gettextf(".lmBACON(): m = %d replaced by m = 1", m), domain =NA)
	m <- 1L
    }
    subset <- is.element(1:n, ordered.indices[1:m])
    tis <- GiveTis(x, y, subset, ordered.x, ordered.y, m, TRUE)
    m <- tis$m
    tis <- abs(tis$tis)
    if(verbose) trace1(steps, m, n, skip.init=skip.init, init.steps = !skip.init)
    if(skip.init) {
	r <- m
    }
    else { ## default (init.fraction = 0) :
	r <- p + 1L
	if(verbose) trace1(steps, r, n, init.steps = TRUE)
	while (r < n && r < m) {
	    ordered.indices <- order(tis)
	    ordered.x <- x[ordered.indices, , drop = FALSE]
	    ordered.y <- y[ordered.indices]
	    subset <- is.element(1:n, ordered.indices[1:r])
	    tis <- GiveTis(x, y, subset, ordered.x, ordered.y, r, TRUE)
	    r <- tis$m + 1L
	    tis <- abs(tis$tis)
	    steps <- steps + 1L
	    if(verbose) trace1(steps, r, n, init.steps = TRUE)
	}
    }
    ordered.indices <- order(tis)
    subset <- is.element(1:n, ordered.indices[1:r])
    presubset <- FALSE # rep(FALSE, n)
    prepre.r <- pre.r <- 0L # == sum(presubset)
    steps <- 0L
    while(steps <= maxsteps &&
          !(pre.r == r && (!any(xor(presubset, subset)) || prepre.r == r))) {
	presubset <- subset
	prepre.r <- pre.r
	pre.r <- r
	tis <- abs(GiveTis(x, y, subset,
			   x[subset, , drop = FALSE],
			   y[subset])$tis)
	limit <- qt(alpha / (2*(r + 1)), r - p, lower.tail=FALSE)
	subset <- tis < limit
	r <- sum(subset)
	steps <- steps + 1L
	if(verbose) trace1(steps, r, n)
    }
    list(subset = subset, tis = tis, steps = steps)
} # end{ .lmBACON() }

Try the robustX package in your browser

Any scripts or data that you put into this service are public.

robustX documentation built on May 2, 2019, 4:06 a.m.