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Abstract

The purpose of this document is to give the formulas and relations needed to under-
stand the Schwartz two-factor commodity model (Schwartz, 1997). This includes parame-
ter estimation using the Kalman filter, pricing of European options as well as computation
of risk measures.

1 Introduction

This document describes the Schwartz two-factor model to the extent which is necessary to
understand the R package schwartz97. The two factors are the spot price of a commodity
together with its instantaneous convenience yield. It was introduced in Gibson and Schwartz
(1990) and extended in Schwartz (1997) for the pricing of futures contracts. Miltersen and
Schwartz (1998) and Hilliard and Reis (1998) presented equations for arbitrage free prices of
European options on commodity futures. In what follows we fully rely on the above mentioned
articles and state the corresponding formulas. In addition we derive the transition density of
the two state variables.

2 Model

The spot price of the commodity and the instantaneous convenience yield are assumed to
follow the joint stochastic process:

dSt = (µ− δt)Stdt+ σSStdWS (1)

dδt = κ(α− δt)dt+ σεdWε, (2)

with Brownian motions WS and Wε under the objective measure P and correlation dWSdWε =
ρdt.

Under the pricing measure Q the dynamics are of the form

dSt = (r − δt)Stdt+ σSStdW̃S (3)

dδt = [κ(α− δt)− λ]dt+ σεdW̃ε, . (4)

where the constant λ denotes the market price of convenience yield risk and W̃S and W̃ε are
Q-Brownian motions. It may be handy to introduce a new mean-level for the convenience
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yield process under Q
α̃ = α− λ/κ, (5)

which leads to the dynamics

dδt = κ(α̃− δt)dt+ σεdW̃ε. (6)

3 Distributions

3.1 Joint Distribution of State Variables

The log-spot Xt = log(St) and the convenience yield δt are jointly normally distributed. The
transition density is 1 (

Xt

δt

)
∼ N

((
µX(t)
µδ(t)

)
,

(
σ2
X(t) σXδ(t)

σXδ(t) σ2
δ (t)

))
, (7)

with parameters

µX(t) = X0 +

(
µ− 1

2
σ2
S − α

)
t+ (α− δ0)

1− e−κt

κ
(8)

µδ(t) = e−κtδ0 + α
(
1− e−κt

)
(9)

σ2
X(t) =

σ2
ε

κ2

(
1

2κ

(
1− e−2κt

)
− 2

κ

(
1− e−κt

)
+ t

)
+ 2

σSσερ

κ

(
1− e−κt

κ
− t
)

+ σ2
St (10)

σ2
δ (t) =

σ2
ε

2κ

(
1− e−2κt

)
(11)

σXδ(t) =
1

κ

{(
σSσερ−

σ2
ε

κ

)(
1− e−κt

)
+
σ2
ε

2κ

(
1− e−2κt

)}
. (12)

The mean-parameters given in (8) and (9) refer to the P-dynamics. To obtain the parameters
under Q one can simply replace µ by r and α by α̃ defined in equation 5. Let the Q-parameters
be denoted by µ̃X(t) and µ̃δ(t).

4 Futures Price

It is worth to mention that the futures and forward price coincide since in our model the
interest rate is assumed to be constant. In the rest of this document, the statements made
about futures contracts therefore also hold for forward contracts.

Let the futures price at time t with time to maturity τ = T − t be G(St, δt, t, T ). For
notational convenience we assume t = 0 in what follows. At time zero the futures price is
given by the Q-expectation of ST .

G(S0, δ0, 0, T ) = EQ(ST ) = exp

{
µ̃X(T ) +

1

2
σ2
X(T )

}
(13)

= S0e
A(T )+B(T )δ0 (14)

1A derivation can be found in appendix A.
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with

A(T ) =

(
r − α̃+

1

2

σ2
ε

κ2
− σSσερ

κ

)
T +

1

4
σ2
ε

1− e−2κT

κ3
+

(
κα̃+ σSσερ−

σ2
ε

κ

)
1− e−κT

κ2
,

(15)

B(T ) = −1− e−κT

κ
. (16)

4.1 Distribution of Futures Prices

According to (13) the futures price follows a log-normal law. That is, at time zero the T -
futures price at time t has the following distribution under Q2:

logG(St, δt, t, T ) ∼ N
(
µG(t, T ), σ2

G(t, T )
)
, (17)

where

µG(t, T ) = µ̃X(t) +A(T − t) +B(T − t)µ̃δ(t) (18)

σ2
G(t, T ) = σ2

X(t) + 2B(T − t)σXδ(t) +B(T − t)2σδ(t). (19)

5 European Commodity Options

The fair price of a European call option on a commodity futures contract was derived as a
special case of more general models in Miltersen and Schwartz (1998) and Hilliard and Reis
(1998).

Here we give the formula for the two-factor model. In this setting, the price of a European
call option C at time zero with maturity t, exercise price K written on a commodity futures
contract with maturity T is given by

CG = EQ [e−r t(G(St, δt, t, T )−K)+
]

(20)

Since the futures price G(St, δt, t, T ) is log-normally distributed we obtain a Black-Scholes
type formula for the call price CG.

CG = P (0, t) {G(0, T )Φ(d+)−KΦ(d−)} (21)

with

d± =
log G(0,T )

K ± 1
2σ

2

σ

σ2 = σ2
St+

2σSσερ

κ

(
1

κ
e−κT

(
eκt − 1

)
− t
)

+
σ2
ε

κ2

(
t+

1

2κ
e−2κT

(
e2κt − 1

)
− 2

κ
e−κT

(
eκt − 1

))
and Φ being the standard Gaussian distribution function.

2Note that the Q-dynamics is primarily interesting to value derivatives on the futures price. For simulation
studies and dynamic financial analysis the real-world (P) dynamics is of relevance. To get the P-dynamics all
“tilde-parameters” have to be replaced by the ones without tilde.
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The following put-call parity is established

CG − PG = P (0, t) {G(0, t)−K} . (22)

Thus, the price for a European put option PG at time zero with maturity t, exercise price K
written on a commodity futures contract with maturity T becomes

PG = P (0, t) {KΦ(−d−)−G(0, T )Φ(−d+)} . (23)

Remark: For the special case when the exercise time t of the option and the maturity T
of the futures contract coincide, formulas (21) and (23) still hold. However, the options we
price for t = T are no longer options written on futures contracts with maturity T but rather
options with exercise time T , written on a commodity spot contract.

6 Parameter Estimation

This section demonstrates an elegant way of estimating the Schwartz two-factor model. That
is estimating the model parameters using the Kalman filter as in Schwartz (1997). Subsection
6.1 shows how the Schwartz two-factor model can be expressed in state space form. Once the
model has been cast in this form the likelihood can be computed and numerically maximized.

6.1 State Space Representation

Let yt denote a (n× 1) vector of futures prices observed at date t and αt denote the (2× 1)
state vector of the spot price and the convenience yield. The state space representation of
the dynamics of y is given by the linear system of equations

yt = ct + Ztαt +Gtηt (24)

αt+1 = dt + Ttαt +Htεt, (25)

where εt ∼ N (0, I2) and ηt ∼ N (0, In). Gt and Ht are assumed to be time-invariant. The
errors (“innovations”) in the measurement equation (24) are further assumed to be independent
in the implementation of this package

GtG
′
t =

g
2
11

. . .

g2
nn

 . (26)

Using the functions A(·) and B(·) defined in (15) and (16) the components of the state space
representation (24) and (25) are

αt+∆t =

(
Xt+∆t

δt+∆t

)
(27)

Tt =

(
1 1

κ

(
e−κ∆t − 1

)
0 e−κ∆t

)
(28)

dt =

((
µ− 1

2σ
2
S − α

)
∆t+ α

κ

(
1− e−κ∆t

)
α
(
1− e−κ∆t

) )
(29)

HtH
′
t =

(
σ2
X(∆t) σXδ(∆t)

σXδ(∆t) σ2
δ (∆t)

)
(30)
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yt =

logGt(1)
...

logGt(n)

 Zt =

1 B(mt(1))
...

...
1 B(mt(n))

 (31)

ct =

A(mt(1))
...

A(mt(n))

 GtG
′
t =

g
2
11

. . .

g2
nn

 (32)

where Xt = logSt, ∆t = tk+1 − tk and mt(i) denotes the remaining time to maturity of
the i-th closest to maturity futures Gt(i).
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A Derivation of the joint distribution

The joint dynamics of the commodity log-price Xt = logSt and the spot convenience yield δt
reads in an orthogonal decomposition of (1) and (2)

dXt =

(
µ− δt −

1

2
σ2
S

)
dt+ σS

√
1− ρ2dW 1

t + σSρdW
2
t (33)

dδt = κ(α− δt)dt+ σεdW
2
t , (34)

Equation (34) can be solved using the substitution δ̃t = eκtδt and Ito’s lemma.

δt = e−κtδ0 + α
(
1− e−κt

)
+ σεe

−κt
∫ t

0
eκudW 2

u (35)

Plugging (35) into (33) gives

Xt = X0 +

∫ t

0
dXu (36)

= X0 +

(
µ− 1

2
σ2
S

)
t−

∫ t

0
δudu+

∫ t

0
σS
√

1− ρ2dW 1
u +

∫ t

0
σSρdW

2
u . (37)

Let’s have a look at the integral
∫ t

0 δudu.∫ t

0
δudu =

∫ t

0
e−κuδ0du+

∫ t

0
α
(
1− e−κu

)
du+

∫ t

0
σεe

−κu
(∫ u

0
eκsdW 2

s

)
du (38)

For the integral
∫ t

0 e
−κu (∫ u

0 e
κsdW 2

s

)
du we use Fubini’s theorem to interchange the order of

integration: ∫ t

0

(∫ u

0
e−κueκsdW 2

s

)
du =

∫ t

0

(∫ t

s
e−κueκsdu

)
dW 2

s (39)

=

∫ t

0

1

κ

(
1− e−κ(t−s)

)
dW 2

s (40)

Plugging eq. (40) into eq. (38) and solving the Riemann integrals yields∫ t

0
δudu =

δ0

κ

(
1− e−κt

)
+ αt− α

κ

(
1− e−κt

)
+ σε

∫ t

0

1

κ

(
1− e−κ(t−s)

)
dW 2

s . (41)

This leaves us with the following expression for Xt:

Xt = X0 +

(
µ− 1

2
σ2
S − α

)
t+ (α− δ0)

1− e−κt

κ
+

+

∫ t

0
σS
√

1− ρ2dW 1
u +

∫ t

0

{
σSρ+

σε
κ

(
e−κ(t−u) − 1

)}
dW 2

u . (42)

The log-spotXt and the convenience yield δt are jointly normally distributed with expectations

E(Xt) = µX = X0 +

(
µ− 1

2
σ2
S − α

)
t+ (α− δ0)

1− e−κt

κ
(43)

E(δt) = µδ = e−κtδ0 + α
(
1− e−κt

)
. (44)
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The variance are obtained using expectation rules for Ito integrals and the Ito isometry.

var(Xt) = σ2
X =

σ2
ε

κ2

{
1

2κ

(
1− e−2κt

)
− 2

κ

(
1− e−κt

)
+ t

}
+ 2

σSσερ

κ

(
1− e−κt

κ
− t
)

+ σ2
St

(45)

var(δt) = σ2
δ =

σ2
ε

2κ

(
1− e−2κt

)
(46)

cov(Xt, δt) = σXδ =
1

κ

[(
σSσερ−

σ2
ε

κ

)(
1− e−κt

)
+
σ2
ε

2κ

(
1− e−2κt

)]
(47)
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