The Max-kCut Problem

Adam Rahman

February 8, 2019

Similar to the Max-Cut problem, the Max-kCut problem asks, given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer k, does a cut exist of at least size k. For a given (weighted) adjacency matrix \mathbf{B} and integer k, the Max-kCut problem is formulated as the following primal problem

$$
\begin{array}{ll}
\underset{\mathbf{X}}{\operatorname{minimize}} & \langle\mathbf{C}, \mathbf{X}\rangle \\
\text { subject to }
\end{array} \quad \begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \operatorname{diag}(\mathbf{X})
\end{aligned}=\mathbf{1} \quad . \quad \forall i \neq j
$$

Here, $\mathbf{C}=-(1-1 / k) / 2 *(\operatorname{diag}(\mathbf{B 1})-\mathbf{B})$. The Max-kCut problem is slightly more complex than the Max-Cut problem due to the inequality constraint. In order to turn this into a standard SQLP, we must replace the inequality constraints with equality constraints, which we do by introducing a slack variable \mathbf{x}^{l}, allowing the problem to be restated as

$$
\begin{array}{ll}
\underset{\mathbf{X}}{\operatorname{minimize}}\langle\mathbf{C}, \mathbf{X}\rangle \\
\text { subject to }
\end{array} \quad \begin{aligned}
& \\
& \operatorname{diag}(\mathbf{X})
\end{aligned}=\mathbf{1} \quad 1 /(k-1) \quad \forall i \neq j
$$

The function maxkcut takes as input an adjacency matrix B and an integer k, and returns the optimal solution using sqlp.

```
R> out <- maxkcut(B,k)
```


Numerical Example

To demonstrate the output provided by sqlp, consider the adjacency matrix

```
R> data(Bmaxkcut)
R> Bmaxcut
```

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
$[1]$,	0	0	0	1	0	0	1	1	0	0
$[2]$,	0	0	0	1	0	0	1	0	1	1
$[3]$,	0	0	0	0	0	0	0	1	0	0
$[4]$,	1	1	0	0	0	0	0	1	0	1
$[5]$,	0	0	0	0	0	0	1	1	1	1

$[6]$,	0	0	0	0	0	0	0	0	1	0
$[7]$,	1	1	0	0	1	0	0	1	1	1
$[8]$,	1	0	1	1	1	0	1	0	0	0
$[9]$,	0	1	0	0	1	1	1	0	0	1
$[10]$,	0	1	0	1	1	0	1	0	1	0

Like the max-cut problem, here we are interested in the primal objective function. Like the max-cut problem, we take the negated value. We will use a value of $k=5$ in the example.

```
R> out <- maxkcut(Bmaxkcut,5)
R> -out$pobj
[1] 19
```

Note also that the returned matrix X is a correlation matrix

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$	$[, 7]$	$[, 8]$	$[, 9]$	$[, 10]$
V1	1.000	0.381	0.503	-0.250	0.403	0.347	-0.250	-0.250	0.060	0.181
V2	0.381	1.000	0.231	-0.250	0.627	0.380	-0.250	0.160	-0.250	-0.250
V3	0.503	0.231	1.000	0.395	0.387	0.597	0.185	-0.250	0.074	0.089
V4	-0.250	-0.250	0.395	1.000	0.134	0.261	0.449	-0.250	0.163	-0.250
V5	0.403	0.627	0.387	0.134	1.000	0.348	-0.250	-0.250	-0.250	-0.250
V6	0.347	0.380	0.597	0.261	0.348	1.000	0.224	0.180	-0.250	0.239
V7	-0.250	-0.250	0.185	0.449	-0.250	0.224	1.000	-0.250	-0.250	-0.250
V8	-0.250	0.160	-0.250	-0.250	-0.250	0.180	-0.250	1.000	0.118	0.216
V9	0.060	-0.250	0.074	0.163	-0.250	-0.250	-0.250	0.118	1.000	-0.250
V10	0.181	-0.250	0.089	-0.250	-0.250	0.239	-0.250	0.216	-0.250	1.000

