The Max-kCut Problem

Adam Rahman

February 8, 2019

Similar to the Max-Cut problem, the Max-kCut problem asks, given a graph $G = (V, E)$ and an integer k, does a cut exist of at least size k. For a given (weighted) adjacency matrix B and integer k, the Max-kCut problem is formulated as the following primal problem

$$\begin{align*}
\text{minimize} & \quad \langle C, X \rangle \\
\text{subject to} & \quad \text{diag}(X) = 1 \\
& \quad X_{ij} \geq 1/(k - 1) \quad \forall \, i \neq j \\
& \quad X \in S_n
\end{align*}$$

Here, $C = -(1 - 1/k)/2 \ast (\text{diag}(B1) - B)$. The Max-kCut problem is slightly more complex than the Max-Cut problem due to the inequality constraint. In order to turn this into a standard SQLP, we must replace the inequality constraints with equality constraints, which we do by introducing a slack variable x^l, allowing the problem to be restated as

$$\begin{align*}
\text{minimize} & \quad \langle C, X \rangle \\
\text{subject to} & \quad \text{diag}(X) = 1 \\
& \quad X_{ij} - x^l = 1/(k - 1) \quad \forall \, i \neq j \\
& \quad X \in S^n \\
& \quad x^l \in L^{n(n+1)/2}
\end{align*}$$

The function maxkcut takes as input an adjacency matrix B and an integer k, and returns the optimal solution using sqlp.

R> out <- maxkcut(B, k)

Numerical Example

To demonstrate the output provided by sqlp, consider the adjacency matrix

R> data(Bmaxkcut)
R> Bmaxkcut

$$\begin{array}{ccccccccccc}
V1 & V2 & V3 & V4 & V5 & V6 & V7 & V8 & V9 & V10 \\
[1,] & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
[2,] & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
[3,] & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
[4,] & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
[5,] & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\end{array}$$
Like the max-cut problem, here we are interested in the primal objective function. Like the max-cut problem, we take the negated value. We will use a value of $k = 5$ in the example.

R> out <- maxkcut(Bmaxkcut,5)

R> -out$pobj
[1] 19

Note also that the returned matrix X is a correlation matrix

```
V1 1.000 0.381 0.503 -0.250 0.403 0.347 -0.250 -0.250 0.060 0.181
V2 0.381 1.000 0.231 -0.250 0.627 0.380 -0.250 0.160 -0.250 -0.250
V3 0.503 0.231 1.000 0.395 0.387 0.597 0.185 -0.250 -0.250 -0.250
V4 -0.250 -0.250 0.395 1.000 0.134 0.261 0.449 -0.250 -0.250 -0.250
V5 0.403 0.627 0.387 0.134 1.000 0.348 -0.250 -0.250 -0.250 -0.250
V6 0.347 0.380 0.597 0.261 0.348 1.000 0.224 0.180 -0.250 0.239
V7 -0.250 -0.250 0.185 0.449 -0.250 0.224 1.000 -0.250 -0.250 -0.250
V8 -0.250 0.160 -0.250 -0.250 -0.250 0.180 -0.250 1.000 0.118 0.216
V9 0.060 -0.250 0.074 0.163 -0.250 -0.250 -0.250 -0.250 0.118 1.000
V10 0.181 -0.250 0.089 -0.250 -0.250 0.239 -0.250 -0.250 0.216 -0.250
```