Nothing
skip_on_cran()
library(testthat)
library(semlbci)
# Fit the model
library(lavaan)
data(cfa_two_factors_mg)
dat <- cfa_two_factors_mg
mod <-
"
f1 =~ x1 + c(a1, a2)*x2 + c(c1, c2)*x3
f2 =~ x4 + c(b1, b2)*x5 + c(d1, d2)*x6
f1 ~ c(fr1, fr2)*f2
ab := a1 * b2
c1 == c2
"
fit <- lavaan::sem(mod, cfa_two_factors_mg,
test = "satorra.bentler",
group = "gp")
# Find the scaling factors
sf1 <- scaling_factor3(fit, 47)
sf2 <- scaling_factor3(fit, 26)
# Find the LBCIs
ciperc <- .96
fn_constr0 <- set_constraint(fit, ciperc = ciperc)
# opts0 <- list(print_level = 3)
opts0 <- list()
opts0 <- list(#ftol_abs = 1e-7,
ftol_rel = 1e-4
# xtol_abs = 1e-7,
# xtol_rel = 1e-7
# tol_constraints_eq = 1e-10
)
time1l <- system.time(out1l <- ci_bound_wn_i(47, 38, sem_out = fit, which = "lbound", opts = opts0, f_constr = fn_constr0, verbose = TRUE, ciperc = ciperc, sf = sf1$c_r, sf2 = sf1$c_rb))
time2u <- system.time(out2u <- ci_bound_wn_i(26, 38, sem_out = fit, which = "ubound", opts = list( ftol_rel = 1e-6), f_constr = fn_constr0, verbose = TRUE, ciperc = ciperc, sf = sf2$c_r, sf2 = sf2$c_rb))
test_that("Check against precomputed answers", {
expect_equal(out1l$bound, 0.694020, tolerance = 1e-5)
expect_equal(out2u$bound, 1.043297, tolerance = 1e-5)
})
skip("Run only if data changed")
# Check the results
modc0 <-
"
f1 =~ x1 + c(a1, a2)*x2 + c(c1, c2)*x3
f2 =~ x4 + c(b1, b2)*x5 + c(d1, d2)*x6
f1 ~ c(fr1, fr2)*f2
ab := a1 * b2
c1 == c2
"
test_limit <- out1l
modc <- paste(modc0, "\nab == ", test_limit$bound)
fitc <- lavaan::sem(modc, cfa_two_factors_mg, fixed.x = FALSE, do.fit = FALSE, test = "satorra.bentler", group = "gp")
ptable <- parameterTable(fitc)
ptable[ptable$free > 0, "est"] <- test_limit$diag$history$solution
fitc <- update(fitc, start = ptable, do.fit = TRUE,
baseline = FALSE, h1 = FALSE, se = "none",
verbose = TRUE
# optim.force.converged = TRUE,
# optim.dx.tol = .01,
# warn = FALSE,
# control = list(
# eval.max = 2,
# iterations = 1,
# control.outer = list(tol = 1e-02,
# itmax = 1)
# )
)
fitc_out1l <- fitc
test_limit <- out2u
modc <- paste(modc0, "\nc2 == ", test_limit$bound)
fitc <- lavaan::sem(modc, cfa_two_factors_mg, fixed.x = FALSE, do.fit = FALSE, test = "satorra.bentler", group = "gp")
ptable <- parameterTable(fitc)
ptable[ptable$free > 0, "est"] <- test_limit$diag$history$solution
fitc <- update(fitc, start = ptable, do.fit = TRUE,
baseline = FALSE, h1 = FALSE, se = "none",
verbose = TRUE
# optim.force.converged = TRUE,
# optim.dx.tol = .01,
# warn = FALSE,
# control = list(
# eval.max = 2,
# iterations = 1,
# control.outer = list(tol = 1e-02,
# itmax = 1)
# )
)
fitc_out2u <- fitc
(lr_out_1l <- lavTestLRT(fitc_out1l, fit, method = "satorra.2000", A.method = "exact"))
get_scaling_factor(lr_out_1l)
sf1
(lr_out_2u <- lavTestLRT(fitc_out2u, fit, method = "satorra.2000", A.method = "exact"))
get_scaling_factor(lr_out_2u)
sf2
test_that("Check p-value for the chi-square difference test", {
expect_true(test_p(fitc_out1l, fit, ciperc = ciperc, tol = 1e-4))
expect_true(test_p(fitc_out2u, fit, ciperc = ciperc, tol = 1e-4))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.