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Abstract

The statistical methodology of sensory discrimination analysis is described. This

forms the basis of the implementation in the sensR package for R. Implementation

choices will be motivated when appropriate and examples of analysis of sensory discrim-

ination experiments will be given throughout using the sensR package. This document

currently covers parameterizations, hypothesis tests, con�dence intervals, and power

and sample size calculations for the four common discrimination protocols: 2-AFC,

3-AFC, triangle and duo-trio; analysis of replicated experiments with the four common

discrimination protocols using the beta-binomial and chance-corrected beta-binomial

models.
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1 Introduction

The aim of this document is 1) to describe the statistical methodology for sensory discrim-
ination testing and analysis, and 2) to describe how such analyses can be performed in R

using package sensR (Christensen and Brockho�, 2010) co-developed by the author of this
document.

This document is divided into sections that cover topics with similar statistical method-
ology. Implementation choices in the sensR package will be described in connection with
the statistical methodology whenever appropriate. Small examples illustrating the use of
functions in the sensR package will appear throughout.

This is not a hands-on practical tutorial to analysis of sensory discrimination experiments
with the sensR package, neither is it a user friendly introduction to discrimination and
similarity testing in sensory discrimination protocols. The former document does not really
exist1 (yet), and for the latter document, we refer the reader to (Næs et al., 2010, chapter
7). We will assume throughout that the reader has basic statistical training and is familiar
with sensory discrimination testing to the level of (Næs et al., 2010, chapter 7).

2 Classi�cation of sensory discrimination protocols

The most common and simplest discrimination protocols comprise the 2-AFC, 3-AFC, tri-
angle, duo-trio, A-not A and same-di�erent protocols. The �rst four protocols are designed
such that the response follows a binomial distribution in the simplest experimental setting.
On the other hand responses from A-not A and same-di�erent protocols are distributed
according to a compound or product binomial distribution in the simplest experimental
setting. An extension of the A-not A method known as the A-not A with sureness is a
classical SDT method which leads to multinomially distributed responses. Similarly the
same-di�erent method extends to the degree-of-di�erence protocol also resulting in multi-
nomially distributed responses. An experiment using one of the �rst four simple protocols
can be summarized with the proportion of correct responses or similarly the probability of
discrimination or d-prime. The Thurstonian models for the remaining protocols involve one
or more additional parameters each with their particular cognitive interpretation.

The 2-AFC and 3-AFC protocols are so-called directional protocols since they require that
the nature of the di�erence (e.g. sweetness) is provided as part of the assessor instructions.
On the other hand the triangle and duo-trio protocols are not directional since these protocols
are used to test un-speci�ed di�erences. From a Thurstonian point of view, the sensory
dimension or the perceptual dimension is �xed in the 2-AFC and 3-AFC methods. The
cognitive decision strategy is consequently assumed di�erent in these two classes of protocols.
When the perceptual dimension is �xed, the assessors may use the more e�ective skimming
strategy, while assessors are forced to use the inferior comparison of distances strategy when
using the un-directional protocols.

The A-not A and same-di�erent protocols are methods with so-called response bias. Re-
sponse bias refers to the concept that one type of response is preferred over another despite
the sensory distance remains unchanged. For instance some assessors may prefer the �A�
response over the �not A� response.

1this is on the to-do list of the author of this document, so there is hope it will appear in the future.
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The four simple protocols are without response bias since no response can be consistently
preferred over another without a�ecting the discriminative e�ect. The decision criterion is
said to be �xed or stabilized.

3 Four common sensory discrimination protocols:

2-AFC, 3-AFC, triangle and duo-trio

The four common sensory discrimination protocols are often used in practical applications
in the food industry as well as in other areas. They are also of considerable interest in the
scienti�c literature about sensory discrimination.

The protocols have one important thing in common from a statistical perspective: their
statistical models can all be described as variants of the binomial distribution. That is,
the answer from any one of these protocols is either correct or incorrect and the sampling
distribution of answers is therefore a binomial distribution.

For the duo-trio and 2-AFC protocols the guessing probability, pg is 1/2. This means that if
there is no discriminative di�erence between the products, then the probability of a correct
answers, pc is one half. Similarly for the triangle and 3-AFC protocols the guessing proba-
bility is 1/3. The four common discrimination protocols are said to be free of response bias

in contrast to the A-not A and same-di�erent protocols.

If we assume for a moment that the population of assessors (be that judges in an expert
panel or consumers) is comprised of ignorants who are always guessing and discriminators
who always discriminate correctly and provide the appropriate answer (though this will not
always be the correct answer). One way to express the sensory distance of the objects
(or discriminative ability of the assessors � we will treat these viewpoints synonymously
throughout) is the proportion of discriminators, pd in the population of interest. It is almost
always an unreasonable assumption that some assessors are either always discriminating or
always guessing (Ennis, 1993), but we may still talk about the probability of discrimination.
This probability may refer to particular individuals or to a population; in this section we
will adopt a population perspective.

The relation between the probability of a correct answer and the probability of discrimination
is

pc = pg + pd(1− pg), (1)

where the guessing probability, pg is 1/2 for the duo-trio and 2-AFC protocols and 1/3 for
the triangle and 3-AFC protocols. The reverse relation is

pd = (pc − pg)/(1− pg). (2)

Another way to summarize the sensory distance is through a measure known as d′ (pro-
nounced �d-prime�) from signal detection theory (SDT, Green and Swets, 1966; Macmillan
and Creelman, 2005), or equivalently the Thurstonian delta, δ (Thurstone, 1927a,b,c). These
two concepts are identical and will be used synonymously throughout, and they are actually
based on the same underlying psychophysical model for the cognitive process. Whereas pc
is a measure and parameter completely free of reference to any particular discrimination
protocol, pd depends on the discrimination protocol through the guessing probability, but
d′ depends on the discrimination protocol through the so-called psychometric function, for
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the discrimination protocol. The psychometric function maps from d′ to the probability of
a correct answer:

pc = fps(d
′). (3)

For the m-AFC method, where m denotes the number of �forced choices�, the psychometric
function is given by

fm-AFC(d
′) =

∫ ∞

−∞
ϕ(z − d′)Φ(z)m−1 dz, (4)

where ϕ is the standard normal probability density function and Φ is the standard normal
cumulative distribution function. The psychometric functions for the four common discrim-
ination protocols are given by

f3-AFC(d
′) =

∫ ∞

−∞
ϕ(z − d′)Φ(z)2 dz (5)

f2-AFC(d
′) =

∫ ∞

−∞
ϕ(z − d′)Φ(z) dz = Φ(d′/

√
2) (6)

ftri(d
′) = 2

∫ ∞

0

{
Φ
[
−z

√
3 + d′

√
2/3
]
+Φ

[
−z

√
3− d′

√
2/3
]}

ϕ(z) dz (7)

fduo-trio(d
′) = 1− Φ(d′/

√
2)− Φ(d′/

√
6) + 2Φ(d′/

√
2)Φ(d′/

√
6). (8)

Further information can be found in Ennis (1993) and Brockho� and Christensen (2010).

The relations between the three scales at which a sensory di�erence is described are illus-
trated in Fig. 1. In the relation between pd and d′ the alternative forced choice protocols
behave similarly, while the duo-trio and triangle protocols behave similarly. The gradient of
the psychometric functions (cf. eq. (17)) goes to zero when d′ goes to zero for the duo-trio
and triangle protocols.

The result of a simple discrimination protocol is a number of correct answers, X = x out of
n trials. Under the assumption of independent observations, the sampling distribution of X
is the binomial:

X ∼ Binom(pc, n), (9)

so

P (X = x) =

(
n

x

)
pxc (1− pc)

n−x. (10)

There is a subtle but important distinction between the proportion of a correct answer and
the probability of a correct answer. The proportion of correct answers is x/n which can be
any number between 0 and 1. The probability of a correct answer, which we denote by pc,
is a parameter and represents a true underlying value. As such pc cannot be lower than
the guessing probability for the discrimination protocol that was used and cannot exceed 1.
The usual estimator of a binomial probability is just the sample proportion, x/n, but this is
not the case here, and it is exactly this feature that makes discrimination testing interesting
statistically.

The maximum likelihood (ML) estimator2 of pc is given by:

p̂c =

{
x/n if x/n ≥ pg
pg if x/n < pg

(11)

2Following standard statistical practice we use the hat-notation to denote an estimator or an estimate
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Figure 1: The connection between d′, pc and pd for the four common sensory discrimination
protocols. The so-called psychometric functions; Pc as a function of d′, are shown in the
upper left �gure.
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The ML estimator of pd is given by application of eq. (2), and the ML estimator of d′, by
inversion of eq. (3), given by

d̂′ = f−1
ps (p̂c), (12)

where f−1
ps (·) (which should not be confused with fps(·)−1 = 1/fps(·)) is the inverse psycho-

metric function.

The allowed ranges (parameter space) for these three parameters are given by

d′ ∈ [0,∞[, pd ∈ [0, 1], pc ∈ [pg, 1]. (13)

Negative d′ values are sometimes mentioned in the literature, but negative d′ values are not
possible in the discrimination protocols that we consider here. They are possible in prefer-
ence tests and theoretically possible in Thurstonian models based on other assumptions, see
section XXX for more background information on this topic.

3.0.1 Implementation in sensR

In package sensR there is a function rescale that maps between the three scales; pc, pd and
d′. A value on one of these scales is given as argument and values on all three scales are
given in the results. The results respect the allowed ranges of the parameters in eq. (13), so
if the supplied pc is less than pg, then pc = pg is returned with pd and d′ at the appropriate
levels:

> rescale(pc = 0.25, method = "triangle")

Estimates for the triangle protocol:

pc pd d.prime

1 0.3333333 0 0

Function rescale use a number of auxiliary functions for its computations; these are also
directly available to the package user:

� pc2pd: maps from the pc-scale to the pd-scale.

� pd2pc: maps from the pd-scale to the pc-scale.

� psyfun: implements the psychmetric functions pc = fps(d
′) for the four common

discrimination protocols, cf. eq. (3).

� psyinv: implements the inverse psychometric functions, d′ = f−1
ps (pc) for the four

common discrimination protocols, cf. eq. (12).

� psyderiv: implements the derivative of the psychometric functions, f ′
ps(d

′) for the
four common discrimination protocols.

3.1 Inference in simple discrimination protocols

To obtain inference in simple discrimination protocols, we need measures such as standard
errors, con�dence intervals (CIs) and p-values from signi�cance tests.
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3.1.1 Standard errors

The standard error of pc is given by:

se(pc) =
√
pc(1− pc)/n. (14)

The standard error of pd and d′ can be found by application of the Delta method (see for
example Pawitan, 2001):

se{f(x)} =
∂f(x)

∂x
se(x) (15)

The standard error of pd is therefore

se(pd) =
1

1− pg
se(pc) (16)

since ∂pd/∂pc = 1/(1− pg), cf. eq. (2). The standard error of d′ can similarly be found as

se(d′) =
∂f−1

ps (pc)

∂pc
se(pc) =

1

f ′
ps(d

′)
se(pc) (17)

where f ′
ps(d

′) is the derivative of the psychometric function with respect to d′; expressions
are given by Brockho� and Christensen (2010).

Standard errors are only de�ned and only meaningful as measures of uncertainty when
the parameter estimate is at the interior of the parameter space, i.e. when the parameter
estimate is not at the boundary of its allowed range, cf. eq. (13).

Even when the parameter estimate is close, in some sense, to the boundary of its parameter
space, the standard error is not a meaningful measure of uncertainty, because the uncertainty
is in fact asymmetric. This means that symmetric con�dence intervals based on the standard
error will also be misleading and other techniques should be applied.

3.1.2 The likelihood function

The (log-)likelihood function can be used to obtain likelihood ratio or likelihood root statis-
tics for hypothesis tests, and it can be used to construct con�dence intervals with good
properties.

The log-likelihood function for a model based on the binomial distribution is given by

ℓ(pc;x, n) = C + x log pc + (n− x) log(1− pc), (18)

where C = log
(
n
x

)
is a constant with respect to pc. The log-likelihood function for pd or d′

is given by combining eq. (18) with (2) or (12).

In general, standard errors can be found as the square root of the diagonal elements of the
variance-covariance matrix of the parameters. The variance-covariance matrix can be found
as the inverse of the negative Hessian matrix (the matrix of second order derivatives) of the
log-likelihood function evaluated at the ML estimates. Here there is only one parameter
(either one of pc, pd or d′), so the matrices are merely scalars.

It can be shown that the same standard errors as those derived in eq. (14), (16) and (17)
can be derived by di�erentiating (18) twice and using the chain rule to obtain the standard
errors of pd and d′.
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3.1.3 Con�dence intervals

There are several general approaches to get CIs for parameters. One general way that applies
(with varying success) to almost all parameters with a standard error is the traditional Wald
interval:

CI : µ̂± z1−α/2se(µ̂), (19)

where z1−α/2 = Φ−1(1−α/2) is the upper α/2 quantile of the standard normal distribution.
This CI is based on the Wald statistic3:

w(µ0) = (µ̂− µ0)/se(µ̂). (20)

The CI may also be expressed more generally for a statistic t(µ0) that follows a standard
normal distribution under the null hypothesis as:

CI : {µ; |t(µ)| < z1−α/2}. (21)

Using w as t in (21) gives the interval (19).

Another general approach is to use the likelihood root statistic (inverted likelihood ratio
test) which applies to all likelihood based models and almost always impressively successful.
The likelihood root statistic is given by:

r(µ0) = sign(µ̂− µ0)
√
2 {ℓ(µ̂;x)− ℓ(µ0;x)} (22)

Both the Wald and likelihood root statistics asymptotically follow standard normal distribu-
tions under the null hypothesis. Even though their asymptotic behavior is in fact identical,
their �nite sample properties may be quite di�erent and often favor the likelihood root
statistic since it removes nonlinear parameterization e�ects.

A disadvantage of Wald intervals is that they are not invariant to nonlinear transformations
of the parameter. This means that a Wald CI for pc and a Wald CI for d′ provides di�erent
kinds of evidence about the parameters and could, for instance, lead to inclusion of pg in
the CI on the pc scale, but exclusion of d′ = 0 on the d′ scale. More generally the Wald CI
for pc cannot be found by transforming the Wald CI limits for d′ through the psychometric
function. The CIs based on the likelihood root statistic is on the other hand invariant to
nonlinear transformations of the parameter. This means the likelihood CI for d′ can be
found by either computing the likelihood CI for d′ directly or by transforming the limits of
the likelihood CI for pc through the inverse psychometric function � they give the same
answer. The evidence provided by the likelihood CI is therefore invariant to the choice of
scale.

Another approach to generate CIs consistent across parameter scales would be to compute
an appropriate CI for, say, pc and then transform the CI limits through the appropriate
functions to obtain CIs for pd and d′. For likelihood CIs this does not make any di�erence,
of course. If an appropriate CI can be computed on any one scale, this would provide
appropriate CIs on the other scales as well. There exists a wide range of CIs for the binomial
probability parameter (refs), for instance the score interval and the so-called exact interval
in addition to the Wald and likelihood intervals.

The 'exact' binomial interval is given by inversion of the 'exact' binomial test and known as
the Clopper-Pearson interval (Clopper and Pearson, 1934). The lower and upper limits are

3actually the original de�nition used se(µ0) in the denominator.
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de�ned as the values of pc that solve:

LL : P (X ≥ x) = α/2, UL : P (X ≤ x) = α/2, (23)

where X ∼ binom(pc, n). Rather than solving these equations numerically, the limits can
be found directly as quantiles of the beta distribution, Beta(a, b): the lower limit is the α/2
quantile of Beta(x, n−x+1) and the upper limit is the 1−α/2 quantile of Beta(x+1, n−x).

Another commonly applied statistic is based on the normal approximation of the binomial
distribution. Asymptotically (X − npc)/

√
npc(1− pc) behaves like a standard normal ran-

dom variable, so we may use

w∗(pc0) =
x− npc0√

npc0(1− pc0)
, (24)

as test statistic. This statistic is in fact identical to the Wald statistic (20) if se(µ0) is used
in the denominator instead of se(µ̂).

The statistic w∗ is related to the Pearson χ2 statistic

X2(pc0) =
(x− npc0)

2

npc0
+

(n− x− n(1− pc0))
2

n(1− pc0)
(25)

since w∗ is the signed square root of X2. Similarly the likelihood root statistic, r(pc0) is
related to the likelihood ratio statistic

G2(pc0) = x log
x

npc0
+ (n− x) log

n− x

n(1− pc0)
(26)

since r(pc0) is the signed square root of G2(pc0).

3.1.4 Sensory di�erence tests

A sensory di�erence test is a test of

H0 :
pc ≤ pc0
pd ≤ pd0
d′ ≤ d′0

versus HA :
pc > pc0
pd > pd0
d′ > d′0

, (27)

where the traditional tests of no-di�erence is given by choosing pc0 = pg, pd0 = 0 and d′0 = 0
making the null hypothesis an equality rather than an inequality.

The p-value of a di�erence test is the probability of observing a number of successes that
is as large or larger than that observed given the null hypothesis that the probability of a
correct answer is pc0. The p-value based on the 'exact' binomial test is therefore:

p-value = P (X ≥ x) = 1−
x−1∑
i=0

(
n

i

)
pic0(1− pc0)

n−i , (28)

where X ∼ binom(pc0, n)

The p-value for a di�erence based on a statistic, t(µ0) that follows a standard normal dis-
tribution under the null hypothesis is given by:

p-value = P{Z ≥ t(µ0)} = 1− Φ{t(µ0)}, (29)

where Z is a standard normal random variable and Φ is the standard normal cumulative
distribution function.
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3.1.5 Sensory similarity tests

A sensory similarity test is a test of

H0 :
pc ≥ pc0
pd ≥ pd0
d′ ≥ d′0

versus HA :
pc < pc0
pd < pd0
d′ < d′0

, (30)

where subject matter considerations and possibly power computations will guide the choice
of pc0, pd0 or d

′
0. Observe that d

′
0 has to be positive for the test to make sense.

The p-value of a similarity test is the probability of observing a number of successes that is
as large or less than that observed given the null hypothesis that the probability of a correct
answer is pc0. The p-value based on the 'exact' binomial test is therefore:

p-value = P (X ≤ x) =

x∑
i=0

(
n

i

)
pic0(1− pc0)

n−i , (31)

where X ∼ binom(pc0, n)

The p-value for a di�erence based on a statistic, t(µ0) that follows a standard normal dis-
tribution under the null hypothesis is given by:

p-value = P{Z ≤ t(µ0)} = Φ{t(µ0)}, (32)

3.1.6 Con�dence intervals and hypothesis tests

Con�dence intervals are often described by their relation to hypothesis tests such that a
two-sided hypothesis test should be accompanied by a two-sided con�dence interval and
one-sided hypothesis tests should be accompanied by one-sided con�dence intervals. This
will make the 1 − α level con�dence interval the region in which an observation would not
lead to rejection of the null hypothesis. A con�dence interval should, however, provide more
than a rejection region; it should provide an interval in which we can have con�dence that
the true parameter lies. This corresponds to the interval which provides most support for
the parameter. As such con�dence intervals should be two-sided even if the appropriate test
may be one-sided (Boyles, 2008). We will use two-sided con�dence intervals throughout and
use these in conjunction with p-values from one-sided di�erence and similarity tests. This
is also implemented in sensR.

Con�dence intervals may, however, be one-sided in a slightly di�erent respect since it may
happen, for instance, that the lower con�dence limit is at the guessing probability, pg. If the
observed proportion of correct answers is less than pg, the lower con�dence limit will also
be higher than the observed proportion.

Con�dence intervals may be degenerate in the sense that both limits can be zero; this is
obviously not very informative. This may happen if, for instance, the observed proportion
is below pg and α is large enough. For small enough α, the upper con�dence limit for d′

will, however, exceed zero.

Con�dence intervals can be used for di�erence and similarity testing as argued by MacRae
(1995) and Carr (1995) when it is enough to know if the alternative hypothesis is rejected
or not. Comparing the formulas for the 'exact' Clopper-Pearson con�dence limits (23) with
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the formulas for p-values in di�erence and similarity tests also based on the exact test, it is
clear that there is a close connection.

If pc0 under H0 is below the lower con�dence limit in a 1−α level interval, then the p-value
of a di�erence test will be below α/2, i.e. the test will be signi�cant at the α/2-level. Thus, if
pc0 is below the lower con�dence limit in a 90% interval, then the di�erence test is signi�cant
at the 5% level. Similarly, if pc0 is above the upper con�dence limit in a 90% interval, then
the similarity test is signi�cant at the 5% level.

In di�erence testing the binomial test is not too liberal even if there is variability in pd under
the alternative hypothesis, because there can be no variability under the null hypothesis that
pd = 0. In similarity testing, however, pd > 0 under H0 and the standard binomial test could
possibly be liberal. Also not that pd under HA will be less than pd under H0, and if there is
variation in pd in the distribution, this variation could be larger under H0 than under HA.
Also, the power and sample size computations in the following assume that zero variability
in pd. Possibly the power will be lower and sample sizes higher if there really is variation in
pd in the population.

The similarity tests discussed so far are targeted toward equivalence in the population on
average. There is no consideration of equivalence on the level of individual discrimination.

A general problem with discrimination testing outlined so far is the assumption that all
assessors have the same probability of discrimination. This is hardly ever a priory plausible.
The so-called guessing model (refs) assumes that there are two kinds of assessors; non-
discriminators that always guess and true discriminators that always perceive the di�erence
and discriminate correctly. This assumption is also hardly ever a priory plausible. More
plausible is perhaps that the probability of discrimination has some distribution across the
population of assessors as is assumed in the chance-corrected beta-binomial distribution.

3.1.7 Implementation in sensR

The function rescale that was described in section 3.0.1 has an additional optional argu-
ment std.err which allows one to get the standard error of, say, pd and d′ if the standard
error of pc is supplied. This is done through application of eq. (16) and (17) and by using
the user visible function psyderiv, which implements the derivative of the psychometric
functions, f ′

ps(d
′) for the four common discrimination protocols:

> rescale(pd = 0.2, std.err = 0.12, method = "triangle")

Estimates for the triangle protocol:

pc pd d.prime

1 0.4666667 0.2 1.287124

Standard errors:

pc pd d.prime

1 0.08 0.12 0.4424604

The discrim function is the primary function for inference in the duo-trio, triangle, 2-AFC
and 3-AFC protocols. Given the number of correct answers, x and the number of trials, n,
discrim will provide estimates, standard errors and con�dence intervals on the scale of pc,
pd and d′. It will also report the p-value from a di�erence or similarity test of the users
choice. p-values will be one-sided while con�dence limits will be two-sided, cf. section 3.1.6.
Con�dence intervals are computed on the scale of pc and then transformed to the pd and d′
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scales as discussed in section 3.1.3. The user can choose between several statistics including
the 'exact' binomial, likelihood, Wald and score statistics. The score option leads to the
so-called Wilson or score interval, while the p-value is based on the w∗ statistic, cf. eq. (24).

Estimates and con�dence intervals reported by discrim respect the allowed range of the
parameters, cf. eq. (13) and standard errors are not reported if the parameter estimates are
on the boundary of their parameter space (allowed range).

Strictly speaking the Wald statistic (20) is not de�ned when x/n ≤ pg, since the standard

error of p̂c is not de�ned. However, it makes sense to use
√

x
n

(
1− x

n

)
1
n as standard error

in this case. This is adopted in discrim.

Similarity testing does not make sense if pc0 = 0 under the null hypothesis, cf. eq. (30), so
a positive pd0 has to be chosen for similarity testing.

Example: Suppose we have performed a 3-AFC discrimination test and observed 10 cor-
rect answers in 15 trials. We want estimates of the pc, pd and d′, their standard error
and 95% con�dence intervals. We are also interested in the di�erence test of no di�erence
and decide to use the likelihood root statistic for con�dence intervals and tests. Using the
discrim function in R we obtain:

> discrim(10, 15, method = "threeAFC", statistic = "likelihood")

Estimates for the threeAFC discrimination protocol with 10 correct

answers in 15 trials. One-sided p-value and 95 % two-sided confidence

intervals are based on the likelihood root statistic.

Estimate Std. Error Lower Upper

pc 0.6667 0.1217 0.4155 0.8652

pd 0.5000 0.1826 0.1232 0.7978

d-prime 1.1159 0.4359 0.2803 1.9967

Result of difference test:

Likelihood Root statistic = 2.632769, p-value: 0.004235

Alternative hypothesis: d-prime is greater than 0

If instead we had observed 4 correct answers in 15 trials and were interested in the similarity
test with pd0 = 1/5 under the null hypothesis, we get using the 'exact' binomial criterion
for con�dence intervals and tests:

> discrim(4, 15, method = "threeAFC", test = "similarity", pd0 = 0.2,

statistic = "exact")

Estimates for the threeAFC discrimination protocol with 4 correct

answers in 15 trials. One-sided p-value and 95 % two-sided confidence

intervals are based on the 'exact' binomial test.

Estimate Std. Error Lower Upper

pc 0.3333 NA 0.3333 0.5510

pd 0.0000 NA 0.0000 0.3265

d-prime 0.0000 NA 0.0000 0.7227

Result of similarity test:

'exact' binomial test: p-value = 0.09638
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Alternative hypothesis: pd is less than 0.2

Standard errors are not estimable due to an observed proportion either

at or below guessing level or at 100%. Everything else is still valid.

A few auxiliary methods for discrim objects are available. confint returns the con�dence
intervals computed in the discrim object, profile extracts the (pro�le) likelihood function
and plot.profile plots the likelihood function.

Example To illustrate the auxiliary methods consider the 3-AFC example above where
10 correct answer were observed in 15 trials.

> fm1 <- discrim(10, 15, method = "threeAFC", statistic = "exact")

> confint(fm1)

Lower Upper

pc 0.3838037 0.8817589

pd 0.0757056 0.8226383

d-prime 0.1744201 2.1015496

attr(,"method")

[1] "threeAFC"

attr(,"conf.level")

[1] 0.95

attr(,"statistic")

[1] "exact"

> plot(profile(fm1))

The resulting graph is shown in Fig. 2. Observe that the likelihood (pro�le) function may
be extracted from a discrim object that is not �tted with statistic = "likelihood".
Further information about the use and interpretation of (pro�le) likelihood curves in sensory
experiments is given in (Brockho� and Christensen, 2010; Christensen and Brockho�, 2009).

3.2 Sample size and power calculations for simple discrimination

protocols

The power of a test is the probability of getting a signi�cant result for a particular test given
data, signi�cance level and a particular di�erence. In other words, it is the probability of
observing a di�erence that is actually there. Power and sample size calculations require that
a model under the null hypothesis and a model under the alternative hypothesis are decided
upon. The null model is often implied by the null hypothesis and is used to calculate the
critical value. The alternative model has to lie under the alternative hypothesis and involves
a subject matter choice. Power is then calculated for that particular choice of alternative
model.

In the following we will consider calculation of power and sample size based directly on the
binomial distribution. Later we will consider calculations based on a normal approximation
and based on simulations.
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Figure 2: Relative likelihood function for a 3-AFC experiment with 10 correct answers in
15 trials. The maximum likelihood estimate is at d′ = 1.12 and the two horizontal lines
determine the 95% and 99% likelihood based con�dence intervals.

3.2.1 The critical value

Formally the critical value, xc of a one-sided binomial test where the alternative hypothesis
is di�erence, or equivalently greater, is the smallest integer number that satis�es

P (X ≥ xc) ≤ α where X ∼ binom(pc0, n) (33)

and pc0 is the probability of a correct answer under the null hypothesis. Similarly the
critical value, xc of a one-sided binomial test where the alternative hypothesis is similarity,
or equivalently less, is the largest integer number that satis�es

P (X ≤ xc) ≤ α where X ∼ binom(pc0, n) (34)

If the sample size is small for the desired α, there may not be a possible critical value that
satis�es (33) or (34). In a di�erence test it may not be enough to observe x = n correct
answers, i.e. all correct answers for the test to be signi�cant at the required α. Similarly,
it may not be enough to observe no correct answers (x = 0) for the similarity test to be
signi�cant at the required α.

A simple way to compute xc is to use a small while loop (shown here for a di�erence
test):

i = 0
while P (X ≥ i) > α do

i = i+ 1
end while

return i+ 1

However, if xc is a large number, many iterations of the loop would be required, so instead
in the findcr function in package sensR eq. (33) and (34) are solved numerically for xc. One
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complication with this method is that P (X ≥ xc) is discontinuous in xc and that requires
special attention.

Example: Consider the situation that X = 15 correct answers are observed out of n = 20
trials in a duo-trio test. The exact binomial p-value of a no-di�erence test is P (X ≥ 15) =
1− P (X ≤ 15− 1) = 0.021, where X ∼ binom(0.5, 20) so this is signi�cant. If on the other
hand we had observed X = 14, then the p-value would have been P (X ≥ 14) = 0.058, which
is not signi�cant. We say that xc = 15 is the critical value for this particular test on the
α = 5% signi�cance level because xc = 15 is the smallest number of correct answers that
renders the test signi�cant.

In R we can �nd the p-values with

> 1 - pbinom(q = 15 - 1, size = 20, prob = 0.5)

[1] 0.02069473

> 1 - pbinom(q = 14 - 1, size = 20, prob = 0.5)

[1] 0.05765915

The while loop looks like

> i <- 0

> while (1 - pbinom(q = i, size = 20, prob = 0.5) > 0.05)

{

i <- i + 1

}

> i + 1

[1] 15

while we could also use the findcr function in package sensR:

> findcr(sample.size = 20, alpha = 0.05, p0 = 0.5)

[1] 15

3.2.2 The power of di�erence tests

The power of a di�erence test is

power = P (X ≥ xc) where X ∼ binom(pcA, n), (35)

where pcA is the probability of a correct answer under the alternative hypothesis and xc is
the critical value of the test, which depends on the probability of a correct answer under the
null hypothesis and the signi�cance level, α.

Power increases with the di�erence between pc0 and pcA, the sample size and α. Power can
be computed directly once the critical value, pcA and n are known, so the only computational
challenge is in the computation of the critical value.

Example: The power of the test considered in the previous example is the probability of
getting this p-value or one that is smaller. This depends on the actual sensory di�erence
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of the objects/the proportion of discriminators. If half the population are discriminators
or equivalently if each assessor has a 50% of correctly discriminating a set of samples, then
pc = 1/2 + 1/2pd = 3/4. The power is the probability of observing 15 or more correct
answers:

power = P (X ≥ 15) = 1− P (X ≤ 15− 1) = 0.617 where X ∼ binom(3/4, 20) (36)

This can be obtained in R with

> 1 - pbinom(q = 15 - 1, size = 20, prob = 3/4)

[1] 0.6171727

or directly using the discrimPwr function from sensR:

> discrimPwr(pdA = 0.5, sample.size = 20, alpha = 0.05,

pGuess = 1/2)

[1] 0.6171727

Observe that discrimPwr requires that the e�ect size under the alternative hypothesis is
given in terms of pd rather than pc or d

′. If the e�ect size under the alternative hypothesis is
formulated in terms of d′, then rescale can be used to convert from d′A to pdA, but it would
be easier to use d.primePwr, which accepts d′A directly and internally calls discrimPwr.

If the signi�cance test of interest is not that of no-di�erence, but that of a small di�erence
versus a relevant di�erence, the computation of the critical value is slightly di�erent. The
power calculation remain essentially the same.

If the limit between irrelevant and relevant di�erences is at pd = 0.1, so pc = 1/2 + 1/2 ·
0.1 = 0.55, then P (X ≥ 16|pc0 = 0.55, n = 20) = 1 − P (X ≤ 16 − 1) = 0.019 while
P (X ≥ 15|pc0 = 0.55, n = 20) = 1− P (X ≤ 15− 1) = 0.055. The critical value is therefore
16 and the power of the test is

power = P (X ≥ 16) = 0.415 where X ∼ binom(pcA = 3/4, n = 20) (37)

In R we could get the power of this test with

> discrimPwr(pdA = 0.5, pd0 = 0.1, sample.size = 20, alpha = 0.05,

pGuess = 1/2)

[1] 0.4148415

Note the pd0 argument which should match the value of pd under the null hypothesis.

3.2.3 The power of similarity tests

The power of a similarity test is

power = P (X ≤ xc) where X ∼ binom(pcA, n), (38)

and pcA is the probability of a correct answer under the alternative hypothesis and xc is the
critical value of the test, which depends on the probability of a correct answer under the
null hypothesis and the signi�cance level, α.

17



Example: Assume that we want to calculate the power of a similarity test using the duo-
trio protocol with n = 100, and that we want to show that the probability of discrimination
is less than 1/3, while we believe that there is actually no di�erence between the objects,
so the true probability of discrimination is zero. The null hypothesis is therefore H0 : pc ≥
1/2 + 1/2 · 1/3 = 2/3 and the alternative hypothesis is HA : pc < 2/3. The critical value
of this test is xc = 58 since p = P (X ≤ 58|pc = 2/3, n = 100) = 0.042 ≤ 0.05 while
P (X ≤ 59) = 0.064 > 0.05. The power of this test is therefore

power = P (X ≤ 58|pc = 0.5, n = 100) = 0.956 (39)

We would compute this power in R with

> discrimPwr(pdA = 0, pd0 = 1/3, sample.size = 100, alpha = 0.05,

pGuess = 1/2, test = "similarity")

[1] 0.955687

If in fact there is a small di�erence between the objects, so that there is a positive probability
of discrimination, say pd = 1/5, then the power is (the critical value remains the same):

power = P (X ≤ 58|pc = 0.5(1 + 1/5), n = 100) = 0.377 (40)

We would compute this power in R with

> discrimPwr(pdA = 1/5, pd0 = 1/3, sample.size = 100, alpha = 0.05,

pGuess = 1/2, test = "similarity")

[1] 0.3774673

Observe how the power of the similarity test is quite good if there is absolutely no observable
di�erence between the objects, while if there is in fact a small probability that a di�erence
can be observed, the power is horrible and the sample size far from su�cient.

3.2.4 Power calculation based on simulations

In more complicated models it is not possible to determine an explicit expression for the
power of a test and calculation of power based on simulations can be an attractive approach.
Sometimes it may also just be easier to let the computer do the job by running simulations
rather than to get bugged down in derivations of explicit expressions for power even though
they may in fact be possible to derive.

Recall that power is the probability of getting a signi�cant result when there is in fact a
di�erence, thus in the long run it is the proportion of signi�cant results to the total number
of tests:

power =
no. p-values < α

no. tests
(41)

We can let the computer generate random data from the model under the alternative hy-
pothesis and then perform the signi�cance test. We can even do that many many times and
record the p-values allowing us to calculate the power via eq. (41). In the following we will
do exactly that for a binomial test for which we know the right answer.

Consider the no-di�erence example above in section 3.2.2 where n = 20 and the power of
a no-di�erence test was 0.617 when pd = 1/2, so pc = 3/4. We will estimate the power
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via simulation by generating 10,000 (pseudo) random draws, Xi, i = 1, . . . , 10, 000 from
Xi ∼ binom(pc = 3/4, n = 20). For each of these draws we calculate the p-value as pi =
P (X ≥ xi|pc = 1/2, n = 20). Among these p-values 6184 were below 0.05, so the power
estimated by simulation is 0.6184. Observe that this is close to, but not exactly the power
that we obtained analytically (0.617). If we did the power calculation over again, we would
most likely get a slightly di�erent power estimate although probably also close to 0.617
because we would obtain a slightly di�erent set of random draws. This illustrates that
although power calculation via simulation is simple, the result varies a little from one run
to another.

Fortunately we can estimate the uncertainty in the estimated power from standard binomial
principles. The standard error of the estimated power is se( ˆpower) =

√
power(1− power)/nsim =√

0.6814(1− 0.6814)/10, 000 = 0.0049 and an approximate Wald 95% CI for the estimated
power is [0.609; 0.628], which covers the true value (0.617) as one would expect.

3.2.5 Power calculation based on the normal approximation

An often used approximation for power and sample size calculations is the normal approx-
imation; the idea is to use a statistic that asymptotically follows a standard normal distri-
bution. For a binomial parameter power and sample size calculation may be based on the
Wald statistic (20) as for example described by Lachin (1981) and advocated by Bi (2006)
in a sensometric context. We are not aware of any numerical assessments of the accuracy
of the normal approximation for power and sample size calculations, but we may expect
that for small n or p (under the null or alternative) close to one, the approximation may be
rather inaccurate. Since power and sample size determinations are readily available for the
exact binomial test, we see no reason to use approximate statistics with doubtful properties
for these purposes.

Consider the following hypotheses for a binomial parameter:

H0 : p = p0 HA : p > p0, (42)

then under the null hypothesis approximately

p̂− p0
σ0

∼ N(0, 1) (43)

and under the alternative hypothesis approximately

p̂− pA
σA

∼ N(0, 1), (44)

where pA is the probability under the alternative hypothesis, σ0 =
√

p0(1− p0)/n, σA =√
pA(1− pA)/n and p̂ = X/n is the estimator of a binomial parameter. The critical point

above which the null hypothesis is rejected is then

p̂− p0
σ0

> Φ−1(1− α) = z1−α (45)

i.e. when
p̂ > z1−ασ0 + p0. (46)
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Under HA the null hypothesis is rejected if

p̂− pA
σA

>
z1−ασ0 + p0 − pA

σA
(47)

and the power is

power = P

(
Z >

z1−ασ0 + p0 − pA
σA

)
= 1− Φ

(
z1−ασ0 + p0 − pA

σA

)
(48)

Equivalent considerations for the equivalence hypotheses lead to

power = P

(
Z <

zασ0 + p0 − pA
σA

)
= Φ

(
zασ0 + p0 − pA

σA

)
(49)

Isolating n in eq. (48) leads to the following expression for the sample size of di�erence tests:

sample size =

(
zβ
√

pA(1− pA)− z1−α

√
p0(1− p0)

p0 − pA

)2

, (50)

where zβ = Φ−1(1− power). Equivalently for similarity tests:

sample size =

(
z1−β

√
pA(1− pA)− zα

√
p0(1− p0)

p0 − pA

)2

, (51)

where z1−β = Φ−1(power). The sample sizes given by (50) and (51) should be rounded up
to the nearest integer.

3.2.6 Sample size determination

In principle sample size determination is simple; �nd the sample size such that the power
is su�ciently high for a particular test at some signi�cance level given some true di�erence.
Computationally, however, it can be a challenge.

Formally, the required sample size, n∗ for a sensory di�erence test is the smallest integer
number, n∗ that satis�es

P (X ≥ xc) ≥ target-power where X ∼ binom(pc, n
∗), (52)

and P (X ≥ xc) is the actual power of the test. Power for a di�erence test only increases
with increasing sample size if the true di�erence, pd is larger than the null di�erence, pd0,
so it is a requirement that the value of pd speci�ed as the true di�erence is actually covered
by the alternative hypothesis.

Similarly, the required sample size, n∗ for a similarity test is the smallest integer number,
n∗ that satis�es

P (X ≤ xc) ≥ target-power where X ∼ binom(pc, n
∗), (53)

and P (X ≤ xc) is the actual power of the test. Power only increases with increasing sample
size if the true di�erence, pd is less than the null di�erence, pd0, so as for di�erence tests,
the value speci�ed as the true di�erence has to be covered by the alternative hypothesis.
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Figure 3: The relation between sample size and power for a di�erence test with the triangle
protocol. The null hypothesis is that of no di�erence and d′ = 0.9 is assumed under the
alternative model. A power of 0.80 is desired.

The sample size depends on the particulars of the null and alternative hypotheses as well as
the signi�cance level of the test, i.e. α and the desired minimum power; the target-power.

So much for the formal de�nitions: practical sample size determination is in fact not as
simple as the de�nitions may lead one to believe. Consider a situation in which we want to
know which sample size to choose in a di�erence test using the triangle protocol where the
null hypothesis is no di�erence, target power is 0.80, and we believe the actual di�erence
is d′ = 0.9 under the alternative hypothesis. Standard sample size calculations under the
de�nition (52) tells us that 297 tests are enough; this leads to an actual power of 0.802.
However, had we decided to use, say, 300 tests�for convenience and just to be on the safe
side, the power of the test is only 0.774; much less than the power with 297 tests and below
our target power. This is truly worrying; how many samples do we need to be sure that all
larger sample sizes also lead to a power above 0.80? It is natural to expect power to increase
with every increase in sample size (a monotonic increase in power with sample size), but
this is not the case as is illustrated in Fig. 3.

Power generally increases with the sample size, but it does so in a zig-zag way due to the
discreteness of the binomial distribution. As is seen in Fig. 3, the smallest sample size for
which power is higher than 0.80 is 297 (actual power = 0.802). The next sample size that
gives a power above 0.80 is 302, but the actual power is now less than 0.801. We would need
305 samples (actual power = 0.806) to obtain a power that is higher than the power with
297, and no less than 318 samples (actual power = 0.802) if no larger sample size should
lead to a power less than 0.80.

Even though an increase in sample size may lead to a decrease in power, it will instead lead
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Figure 4: Left: critical value of the test. Right: actual α-level of the test.

to a decrease in the actual α-level. This occurs because the critical value of the test is at
times piece-wise constant as a function of sample size, cf. Fig. 4.

The sample size for the exact binomial test may be computed with much the same while loop
that could also be used to �nd the critical value (cf. section 3.2.1):

i = 1
while actual power(i) < target power do
i = i+ 1

end while

return i

where actual power depends on the hypothesis, cf. (52) and (53). The problem with this
approach is that if the required sample size is large, it may take some time to get there;
recall that at every evaluation of the actual power, the critical value has to be determined.
Due to the non-monotonicity of the relationship between power and sample size (cf. Fig. 3),
it is not possible to simply solve for the required sample size numerically.

An improvement over the simple while loop is suggested by the normal approximation to
the required sample size shown in Fig. 3 in blue. This approximation seems to estimate the
sample size too low, and to do so consistently. For the example considered here, the normal
approximation estimates that 291 samples is enough to obtain a power of 0.80 (actual power
= 0.8001). The while loop could simply be started at i = 291 rather than at i = 1. A problem
with this approach is that the normal approximation is not always strictly liberal. In the
function discrimSS in package sensR a compromise is used, where the while loop is started
at one if the sample size estimated by the normal approximation is less than 50. Otherwise
the while loop is started at 90% of the normal approximation estimate and sometimes even
lower if necessary. If the normal approximation estimate is larger than 10,000, the function
will inform of that and not attempt to estimate the sample size due to the expected large
computation time. In addition to the sample size for the 'exact' binomial test, it is also
possible to ask for the sample size based on the normal approximation.

Example: Consider the example above illustrated in Fig. 3; we wanted to know the sample
size for a di�erence test where the null hypothesis is that of no di�erence using the triangle
protocol. We want a power of 0.80, take α = 0.05 and we assume the actual di�erence is
d′ = 0.9 under the alternative hypothesis. Using package sensR we may get the sample size
for the exact binomial test with
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> (pd <- coef(rescale(d.prime = .9, method = "triangle"))$pd)

[1] 0.1044969

> discrimSS(pdA = pd, pd0 = 0, target.power = 0.8, alpha = 0.05, pGuess

= 1/3, test = "difference", statistic = "exact")

[1] 297

We could also obtain the normal approximation with

> discrimSS(pdA = pd, pd0 = 0, target.power = 0.8, alpha = 0.05, pGuess

= 1/3, test = "difference", statistic = "normal")

[1] 291

References

Bi, J. (2006). Sensory Discrimination Tests and Measurements�Statistical Principles, Pro-

cedures and Tables. Blackwell Publishing.

Boyles, R. A. (2008). The role of likelihood in interval estimation. The American Statisti-

cian 62 (1), 22�26.

Brockho�, P. B. and R. H. B. Christensen (2010). Thurstonian models for sensory discrim-
ination tests as generalized linear models. Food Quality and Preference 21, 330�338.

Carr, B. T. (1995). Con�dence intervals in the analysis of sensory discrimination tests�the
integration of similarity and di�erence testing. In Proceedings of the 4th AgroStat, Dijon,

7.-8. December, pp. 23�31.

Christensen, R. H. B. and P. B. Brockho� (2009). Estimation and Inference in the Same
Di�erent Test. Food Quality and Preference 20, 514�524.

Christensen, R. H. B. and P. B. Brockho� (2010). sensR: An R-package for Thursto-
nian modelling of discrete sensory data. R package version 1.2.0 http://www.cran.r-
project.org/package=sensR/.

Clopper, C. J. and E. S. Pearson (1934). The use of con�dence or �ducial limits illustrated
in the case of the binomial. Biometrika 26, 404�413.

Ennis, D. M. (1993). The power of sensory discrimination methods. Journal of Sensory

Studies 8 (353-370).

Green, D. M. and J. A. Swets (1966). Signal Detection Theory and Psychophysics. John
Wiley & Sons.

Lachin, J. M. (1981). Introduction to sample size determination and power analysis for
clinical trials. Controlled Clinical Trials 2, 93�113.

Macmillan, N. A. and C. D. Creelman (2005). Detection Theory, A User's Guide (Second
ed.). Lawrence Elbaum Associates, Publishers.

MacRae, A. W. (1995). Con�dence intervals for the triangle test can give assurance that
products are similar. Food Quality and Preference 6 (61-67).

23



Næs, T., P. B. Brockho�, and O. Tomic (2010). Statistics for sensory and consumer science.
John Wiley & sons Ltd.

Pawitan, Y. (2001). In All Likelihood�Statistical Modelling and Inference Using Likelihood.
Oxford University Press.

Thurstone, L. L. (1927a). A law of comparative judgment. Psychological Review 34, 273�286.

Thurstone, L. L. (1927b). Psychophysical analysis. American journal of Psychology 38,
368�389.

Thurstone, L. L. (1927c). Three psychological laws. Psychological Review 34, 424�432.

24


