Exponential extension distribution | R Documentation |
Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the exponential extension distribution.
se_nh(alpha, beta)
re_nh(alpha, beta, delta)
hce_nh(alpha, beta, delta)
ae_nh(alpha, beta, delta)
alpha |
The strictly positive parameter of the exponential extension distribution ( |
beta |
The strictly positive parameter of the exponential extension distribution ( |
delta |
The strictly positive parameter ( |
The following is the probability density function of the exponential extension distribution:
f(x)=\alpha\beta(1+\alpha x)^{\beta-1}e^{1-(1+\alpha x)^{\beta}},
where x > 0
, \alpha > 0
and \beta > 0
.
The functions se_nh, re_nh, hce_nh, and ae_nh provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the exponential extension distribution and \delta
.
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
Nadarajah, S., & Haghighi, F. (2011). An extension of the exponential distribution. Statistics, 45(6), 543-558.
re_exp, re_gamma, re_ee, re_wei
se_nh(1.2, 0.2)
delta <- c(1.5, 2, 3)
re_nh(1.2, 0.2, delta)
hce_nh(1.2, 0.2, delta)
ae_nh(1.2, 0.2, delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.