
simSummary: Simulation summary

by Gregor Gorjanc

May 16, 2012

Abstract

simSummary is a small utility package which eases the process of summarizing
simulation results. Simulations often produce intermediate results - some focal
statistics that need to be summarized over several scenarios and many replica-
tions. This step is in principle easy, but tedious. The package simSummary
fills this niche by providing a generic way of summarizing the focal statistics of
simulations. The useR must provide properly structured input, holding focal
statistics, and then the summary step can be performed with one line of code,
calling the simSummary function.

0.1 Introduction

Simulations are often used to study complex processes. In statistics, simulations
are often used to study the uncertainty of estimates which is due to the sampling
variability of their inputs (data). Almost any simulation can be divided into two
parts. The first part is to carry out a simulation of a complex process. This
part differs from simulation to simulation in essential ways. Often some focal
statistics are computed to summarize the simulated process, e.g., the mean.
To capture the variability of a studied process, several replications are created
and for each replication the focal statistics are saved. The second part of a
simulation is to summarize the focal statistics collected. This is in principle a
very simple task, though often a tedious one due to the need to summarize the
focal statistics over several simulation scenarios and many replications. Since
this task is structurally always the same and is independent of the simulation,
there is an open niche for a generic tool. simSummary is a small utility
package with a single function of the same name (simSummary), which tries
to fulfill this need by easing the process of summarizing focal statistics over
simulation scenarios and replications.

0.2 Description with example

A simple example will be used to demonstrate the use of the simSummary
package. Say we are studying lamb growth around 60 days using a linear re-
gression of body weight (y) on age (x):

yi = α+ β(xi − 60) + ei,

where α is an intercept (the average lamb body weight at 60 days) and β
is a slope (the average lamb growth rate or daily gain) of a regression line.
We would like to quantify the variability of some focal statistics in relation to
the sample size. Three scenarios with differing numbers of observations will be
tested, and the focal statistics will be the estimates of the parameters α̂ and β̂
and the coefficient of determination R̂2. This is not a very complex simulation,
but nicely shows the usage of the simSummary package.

First we need to set the parameters of the studied process and simulation.

> ## Process (lamb growth) parameters

> xMin <- 40 ## minimal age

> xMax <- 80 ## maximal age

> alpha <- 20 ## ave. weight at 60 days

> beta <- 0.35 ## growth rate

> sdE <- 2 ## residual variation

> ## Simulation parameters

> nY <- c(10, 100, 1000) ## scenarios

> nS <- length(nY) ## no. scenarios

> nR <- 100 ## no. replications

Then, containers for the focal statistics need to be set up. There are several
ways to set up such containers, but for the use of the simSummary package,
we must follow two rules:

� set up the “outer” list of length equal to the number of replications (nR)
and

� each element of an “outer” list must also be a list (the “inner” list).

For the lamb growth simulation, the two parameter estimates and the co-
efficient of determination for each scenario will be stored in the corresponding
“inner” list. The way the focal statistics are stored in the “inner” list is free as
long as the elements of this list are either numeric vectors, matrices, or arrays.
These three object classes should cover the majority of needs.

> ## Outer list

> sim <- vector(mode="list", length=nR)

> ## Inner list

> simI <- vector(mode="list", length=2)

> names(simI) <- c("coef", "R2")

> simI$coef <- matrix(nrow=2, ncol=nS)

> simI$R2 <- matrix(nrow=1, ncol=nS)

> colnames(simI$coef) <- colnames(simI$R2) <- nY

> rownames(simI$coef) <- c("alpha", "beta")

2

The simulation of the lamb growth process could be performed as shown
below, which completes the first part of the simulation. In order to show the
structure of the “inner” lists, the focal statistics collected from the first two
replications are printed out.

> for(i in 1:nR) {

+ sim[[i]] <- simI

+ for(j in 1:nS) {

+ x <- runif(n=nY[j], min=xMin, max=xMax) - 60

+ y <- alpha + beta * x + rnorm(n=nY[j], sd=sdE)

+ tmp <- lm(y ~ x)

+ sim[[i]]$coef[, j] <- coef(tmp)

+ sim[[i]]$R2[j] <- summary(tmp)$r.squared

+ }

+ }

> sim[1:2]

[[1]]

[[1]]$coef

10 100 1000

alpha 19.5779988 20.1111013 19.967707

beta 0.3211597 0.3637645 0.344984

[[1]]$R2

10 100 1000

[1,] 0.7167131 0.8626802 0.7893356

[[2]]

[[2]]$coef

10 100 1000

alpha 19.3975637 19.7316175 20.0177078

beta 0.4361056 0.3404666 0.3547691

[[2]]$R2

10 100 1000

[1,] 0.9194269 0.8314889 0.8187996

The second part of the simulation is to summarize the collected focal statis-
tics over the simulation scenarios and replications. With the use of the sim-

Summary function, this is very easy. If the interest is in means and standard
deviations, the following three lines of code will: i) install the package from
CRAN, ii) load the package, and iii) summarize the simulation.

> # install.packages(pkg="simSummary")

> library(package="simSummary")

> simSummary(x=sim, FUN=c("mean", "sd"))

$mean

$mean$coef

10 100 1000

3

alpha 20.0211092 20.0099041 19.9893846

beta 0.3515219 0.3535567 0.3501057

$mean$R2

10 100 1000

[1,] 0.7974498 0.8090594 0.8037297

$sd

sdcoef

10 100 1000

alpha 0.72720165 0.21432759 0.058253783

beta 0.06077136 0.01905526 0.004965014

sdR2

10 100 1000

[1,] 0.121727 0.02853429 0.009320538

The only two requirements for the simSummary function are i) properly struc-
tured input (an “outer” list of “inner” lists holding numeric vectors, matrices,
or arrays) and ii) the summary functions must return a single value, such as
length, mean, etc., but not range, table, etc. An error message is thrown
when any of these two requirements is not met. The output of simSummary is
also an “outer” list of “inner” lists, where its “inner” lists have the same structure
as in the input. There is one instance of an “inner” list for each summarizing
function.

Simulations are often time consuming, and often run as a (parallel) batch
job. The summary step can then be performed when all jobs finish. However,
to obtain preliminary results, a script can be set up that creates the structured
input and fills it with the available values. Missing values can then be accom-
modated in the simSummary function with the argument na.rm=TRUE which is
passed to the summarizing functions.

> ## Mimick simulation in progress

> sim[[100]]$coef[] <- NA

> sim[[100]]$R2[] <- NA

> simSummary(x=sim, FUN=c("nobs", "mean"),

+ na.rm=TRUE)

$nobs

$nobs$coef

10 100 1000

alpha 99 99 99

beta 99 99 99

$nobs$R2

10 100 1000

[1,] 99 99 99

$mean

4

$mean$coef

10 100 1000

alpha 20.0250648 20.0091014 19.9894409

beta 0.3507131 0.3535304 0.3501186

$mean$R2

10 100 1000

[1,] 0.7962999 0.8089798 0.8038047

0.3 Development

The published version of the simSummary package is hosted at CRAN1. For
the development inlinedocs package, (Inlinedocs development team, 2011) is
used to mix the code and documentation in one file, while the svUnit pack-
age (Grosjean, 2012) is used for unit testing. Any useR can run the package
unit tests with simSummary_unitTests(). Contributions to the package are
welcome.

0.4 Summary

simSummary is a small utility package which eases the process of summarizing
selected focal statistics in simulations. The only effort needed is to properly
structure the input, while the summary step is easy to perform. By using the
simSummary package useRs can devote more time to the analysis of simulation
results than to the tedious development of simulation specific summarizing code.

R session information

> sessionInfo()

R version 2.15.0 (2012-03-30)

Platform: x86_64-pc-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.utf8 LC_NUMERIC=C

[3] LC_TIME=en_US.utf8 LC_COLLATE=C

[5] LC_MONETARY=en_US.utf8 LC_MESSAGES=en_US.utf8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.utf8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] simSummary_0.1.0 svUnit_0.7-5 abind_1.4-0

1http://CRAN.R-project.org/package=simSummary

5

http://CRAN.R-project.org/package=simSummary

loaded via a namespace (and not attached):

[1] gdata_2.8.0 gtools_2.6.2 tools_2.15.0

6

Bibliography

Inlinedocs development team. inlinedocs: Convert inline comments to docu-
mentation. 2011. URL http://CRAN.R-project.org/package=inlinedocs.

Grosjean, P. SciViews-R: A GUI API for R. UMONS, Mons, Belgium. 2012.
URL http://www.sciviews.org/SciViews-R.

7

http://CRAN.R-project.org/package=inlinedocs
http://www.sciviews.org/SciViews-R

	Introduction
	Description with example
	Development
	Summary

