R/pValueNested.R

Defines functions pValueNested

Documented in pValueNested

### pValueNested: Find p value for a nested model comparison
### Last updated: 2 June 2018

pValueNested <- function(outNested, outParent, simNested, simParent, usedFit = NULL,
    nVal = NULL, pmMCARval = NULL, pmMARval = NULL, df = 0) {
    mod <- clean(simNested, simParent)
    simNested <- mod[[1]]
    simParent <- mod[[2]]
	usedFit <- cleanUsedFit(usedFit, colnames(simNested@fit), colnames(simParent@fit))
    revDirec <- (usedFit %in% getKeywords()$reversedFit)  # CFA --> FALSE, RMSEA --> TRUE

    if (!isTRUE(all.equal(unique(simNested@paramValue), unique(simParent@paramValue))))
        stop("Models are based on different data and cannot be compared, check your random seed")
    if (!isTRUE(all.equal(unique(simNested@n), unique(simParent@n))))
        stop("Models are based on different values of sample sizes")
    if (!isTRUE(all.equal(unique(simNested@pmMCAR), unique(simParent@pmMCAR))))
        stop("Models are based on different values of the percent completely missing at random")
    if (!isTRUE(all.equal(unique(simNested@pmMAR), unique(simParent@pmMAR))))
        stop("Models are based on different values of the percent missing at random")

    if (is.null(nVal) || is.na(nVal))
        nVal <- NULL
    if (is.null(pmMCARval) || is.na(pmMCARval))
        pmMCARval <- NULL
    if (is.null(pmMARval) || is.na(pmMARval))
        pmMARval <- NULL
    Data <- as.data.frame((simNested@fit - simParent@fit)[, usedFit])
    condition <- c(length(unique(simNested@pmMCAR)) > 1, length(unique(simNested@pmMAR)) >
        1, length(unique(simNested@n)) > 1)
    condValue <- cbind(simNested@pmMCAR, simNested@pmMAR, simNested@n)
    colnames(condValue) <- c("Percent MCAR", "Percent MAR", "N")
    condValue <- condValue[, condition]
    if (is.null(condValue) || length(condValue) == 0)
        condValue <- NULL
    predictorVal <- rep(NA, 3)
    if (condition[3]) {
        ifelse(is.null(nVal), stop("Please specify the sample size value, 'nVal', because the sample size in the result object is varying"),
            predictorVal[3] <- nVal)
    }
    if (condition[1]) {
        ifelse(is.null(pmMCARval), stop("Please specify the percent of missing completely at random, 'pmMCARval', because the percent of missing completely at random in the result object is varying"),
            predictorVal[1] <- pmMCARval)
    }
    if (condition[2]) {
        ifelse(is.null(pmMARval), stop("Please specify the percent of missing at random, 'pmMARval', because the percent of missing at random in the result object is varying"),
            predictorVal[2] <- pmMARval)
    }
    predictorVal <- predictorVal[condition]
	if(is(outNested, "MxModel") & is(outParent, "MxModel")) {
		cutoff <- fitMeasuresMx(outNested)[usedFit] - fitMeasuresMx(outParent)[usedFit]
	} else if (is(outNested, "lavaan") & is(outParent, "lavaan")) {
		cutoff <- lavaan::fitMeasures(outNested, fit.measures = usedFit) -
		          lavaan::fitMeasures(outParent, fit.measures = usedFit)
	} else if (is(outNested, "lavaan.mi") & is(outParent, "lavaan.mi")) {
	  cutoff <- getMethod("fitMeasures", "lavaan.mi")(outNested, fit.measures = usedFit) -
	            getMethod("fitMeasures", "lavaan.mi")(outParent, fit.measures = usedFit)
	} else {
		stop("The 'outNested' and 'outParent' arguments must be both lavaan objects or MxModel objects.")
	}
    if (any(condition)) {
        result <- pValueDataFrame(cutoff, Data, revDirec, x = condValue, xval = predictorVal,
            df = df, asLogical = FALSE)
        names(result) <- usedFit
        return(result)
    } else {
        logicalMat <- pValueDataFrame(cutoff, Data, revDirec, asLogical = TRUE)
        result <- apply(logicalMat, 2, mean, na.rm = TRUE)
        names(result) <- usedFit
        andRule <- mean(apply(logicalMat, 1, all), na.rm = TRUE)
        orRule <- mean(apply(logicalMat, 1, any), na.rm = TRUE)
        return(c(result, andRule = andRule, orRule = orRule))
    }
}

Try the simsem package in your browser

Any scripts or data that you put into this service are public.

simsem documentation built on June 3, 2018, 5:04 p.m.