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1 Introduction

The simplest case of ANalysis of COVAriance (ANCOVA) is that in which there are two
nominal groups and the data within each group can be fit with a straight line. Let yij be
the response for the ith individual (i = 1, ..., N) in the jth group (j = 1, 2). Then

yij = αj + βjxij + eij (1)

where xij is the covariate for the ith subject (i = 1, ..., N) in the jth group (j = 1, 2) and
eij is the error (residual) term. The expected value for yij is

E(yij) = αj + βjxij . (2)

Note that in this formulation, there is no term for the grand mean, µ.

2 Four Models of Interest

For the two-group straight-line ANCOVA case, four models are of interest: (A) Model A,
the full model, which incorporates individual intercepts and individual slopes; (B) Model
B, a completely reduced model that incorporates only a single intercept and slope; (C)
Model C, a reduced model that incorporates individual intercepts and a common slope;
and (D) Model D, a reduced model that incorporates a common intercept, but allows for
individual slopes. Therefore, for the simple ANCOVA case in which data arise from two
nominal groups, and through which straight lines can be fit, the expected values for models
A, B, C, and D, respectively, can be written as:

E(yij) = α1 + β1xi1 + α2 + β2xi2, (3)

E(yij) = α+ βxij , (4)

E(yij) = α1 + α2 + βxij , and (5)
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E(yij) = α+ β1xi1 + β2xi2. (6)

In equation (3), it is understood that if the ith subject (case) is in group 1, then α2 = 0
and β2 = 0. Alternatively, if the ith subject (case) lies in group 2, then α1 = 0 and β1 = 0.
Similarly, in equation (5), if the ith case is in group 1, then α2 = 0, and j = 1 in the
subscript for βxij . The reverse is also true. In equation (6), if the ith case lies in group 1,
then β2 = 0, and vice versa.

Figure 1 depicts the four models of interest for this general two-group, straight-line
ANCOVA situation.

3 Derivation of Sums of Squares for ANOVA Table

Following Searle (1971, Chapter 3) let X be the design matrix for a regression model of
full rank. The coefficient vector b has length equal to the column rank of X. The response
vector y has elements yij , i = 1, ..., N . The error vector e has elements eij , i = 1, ..., N .
Then, in matrix notation,

y = Xb + e, with E(y) = Xb. (7)

The solution for the estimation of parameters b is

b̂ = (X′X)−1Xy. (8)

In this paper, all design matrices are of full column rank. Therefore, X′X is of full rank
and (X′X)−1 exists.

The total sum of squares, SST, uncorrected for the mean, is the sum of: (1) the sum of
squares due to regression, SSR, and (2) the sum of squares due to error (to the residuals),
SSE (Searle, 1971, pp 93-4). That is,

SST = SSR + SSE (9)

In matrix notation, this identity is written

y′y = b̂′X′y + e′e = b̂′X′Xb̂ + y′[I−X(X′X)−1X′]y (10)

where I is the identity matrix with rank N . This, in turn, yields

SSE = SST - SSR = e′e = y′y − b̂′X′y. (11)
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Figure 1: Four Models of Interest: (A) Individual intercepts and individual slopes, (B)
Single intercept and single slope, (C) Individual intercepts and single slope, (D) Single
intercept and individual slopes.
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For any given set of observed data, y, for which we want to fit models A, B, C and D,
the total (uncorrected) sum of squares SST, or y′y, will be the same. However, the design
matrices, X, the coefficient vectors, b, and the residuals e will, in general, differ among
models A, B, C and D.

Let XA, XB, XC and XD be the design matrices for models A, B, C and D, respectively.
Then, for model A with design matrix XA, error vector eA, and coefficient vector bA, we
have

XA =



1 x11 0 0
1 x21 0 0
...

...
...

...
1 xn11 0 0
. . . . . . . . . . . .
0 0 1 x12
0 0 1 x22
...

...
...

...
0 0 1 xn22


, y =



y11
y21
...

yn11

. . .
y12
y22
...

yn22


, eA =



e11
e21
...

en11

. . .
e12
e22
...

en22


, and bA =


α1

β1
α2

β2

.

where n1 + n2 = N .

Similarly, for model B, with design matrix XB, we have

XB =



1 x11
1 x21
...

...
1 xn11

. . . . . .
1 x12
1 x22
...

...
1 xn22


, y =



y11
y21
...

yn11

. . .
y12
y22
...

yn22


, eB =



e11
e21
...

en11

. . .
e12
e22
...

en22


, and bB =

[
α
β

]

where, again, n1 + n2 = N .

For model C, with design matrix XC, we have
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XC =



1 0 x11
1 0 x21
...

...
...

1 0 xn11

. . . . . . . . .
0 1 x12
0 1 x22
...

...
...

0 1 xn22


, y =



y11
y21
...

yn11

. . .
y12
y22
...

yn22


, eC =



e11
e21
...

en11

. . .
e12
e22
...

en22


, and bC =

 α1

α2

β

.

And for model D, with design matrix XD, we have

XD =



1 x11 0
1 x21 0
...

...
...

1 xn11 0
. . . . . . . . .
1 0 x12
1 0 x22
...

...
...

1 0 xn22


, y =



y11
y21
...

yn11

. . .
y12
y22
...

yn22


, eD =



e11
e21
...

en11

. . .
e12
e22
...

en22


, and bD =

 α
β1
β2

.

We have explicitly displayed the design matrices, error (residual) vectors, and coefficient
vectors, separately, for models A, B, C and D to drive home the fact that they will differ
under each model. Model A, which fits four parameters, is the full model. Models B, C,
and D are reduced models, which are nested within model A. Taking a1, b1, a2 and b2 as
the least squares estimates of α1, β1, α2 and β2, respectively, the sum of squares due to
regression for model A is

SSRA = SS(a1, b1, a2, b2) = b̂A
′
XA

′XAb̂A = b̂A
′
XA

′y. (12)

Letting a and b represent the estimates for α and β, the sum of squares due to regression
for model B is

SSRB = SS(a, b) = b̂B
′
XB
′XBb̂B = b̂B

′
XB
′y. (13)

Taking a1, a2 and b as the least squares estimates for α1, α2 and β, the sum of squares due
to regression for model C is

SSRC = SS(a1, a2, b) = b̂C
′
XC

′XCb̂C = b̂C
′
XC

′y. (14)

5



Finally, letting a, b1 and b2 be the least squares estimates of α, β1 and β2, the sum of
squares due to regression for model D is

SSRD = SS(a, b1, b2) = b̂D
′
XD

′XDb̂D = b̂D
′
XD

′y. (15)

As stated above, for any given set of criterion data, y, for which we want to fit models
A, B, C and D, the total (uncorrected) sum of squares SST, or y′y, will remain the same.
It is also true that the predictor (regressor) variables, xij ’s, will remain the same, though
they are grouped differently in the design matrices for each model. The design matrices,
X, the estimated coefficient vectors, b̂, and the residuals e will, in general, differ among
models A, B, C and D. For example, the values of a1 and a2 in (12) will not, in general,
be equal to the values of a1 and a2 in (14). The value of a in (13) will not be equal (in
general) to a in (15), nor will the value of b in (13) be equal to b in (14).

From (9), we have SST = SSR + SSE. Table 1 shows a skeleton source table that
partitions the SST, y

′
y, into SSR and SSE for models A, B, C and D. The number of

parameters estimated in model A is 4. The numbers of parameters estimated in models B,
C and D, respectively, are 2, 3, and 3. The SST = y′y does not change for a particular data
set being analyzed. Since 4 parameters are estimated in model A, the sum of squares for
regression for model A, SSRA, necessarily (of necessity) must be greater than or equal to
the sum of squares due to regression for models B, C, and/or D. That is SSRA ≥ SSRB,
SSRA ≥ SSRC, and SSRA ≥ SSRD. At the same time, it must be true that the
residual sum of squares for model A, SSEA, must be less than or equal to the residual
sums of squares for models B, C, or D. That is SSEA ≤ SSEB, SSEA ≤ SSEC, and
SSEA ≤ SSED.

Table 1: Partitioning of SST for Models A, B, C and D

Model No. Parms Resid SST SSR SSE
Estimated df

A 4 N − 4 y′y SSRA = bA
′XA

′y SSEA = y′y − bA
′XA

′y

B 2 N − 2 y′y SSRB = bB
′XB

′y SSEB = y′y − bB
′XB

′y

C 3 N − 3 y′y SSRC = bC
′XC

′y SSEC = y′y − bC
′XC

′y

D 3 N − 3 y′y SSRD = bD
′XD

′y SSED = y′y − bD
′XD

′y
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4 The Extra Sum of Squares Principle and Tests for Param-
eters Being Zero

Recall that SSRA = SS(a1, b1, a2, b2) to denote the regression sum of squares for the full
model, model A. Similarly, for the completely reduced model B, we write SSRB = SS(a, b).
The regression sum of squares for the reduced model C is written SSRC = SS(a1, a2, b) and
the regression sum of squares for the reduced model D is written SSRD = SS(a, b1, b2). As
stated previously, none of the estimated values in model A, (a1, b1, ...), etc., will, in general,
be equal to any of the estimates of a1, b1, etc., in models B, C or D.

In the regression analysis of the two-group, straight-line ANCOVA setup, there are
typically three null hypotheses of interest that arise in connection with comparisons among
these four models. These are referred to as the null hypotheses for: (1) equivalent data
sets, (2) equivalent slopes, and (3) equivalent intercepts. Under standard assumptions,
tests for acceptance or rejection of these null hypotheses can be accomplished using the
reduction in sums of squares principle (Searle, 1971, pp 99-105, pp 116-20, pp 246-9), the
extra sum of squares principle (Draper and Smith, 1998, pp 149-51), or the incremental
sum of squares principle (Fox, 2008, pp 158-9). It can be shown (e.g., Searle, 1971, pp
99-105, pp 246-9; Draper and Smith, pp 38-39) that under assumptions of the equivalence
of specific parameters in the models being compared, the expected value of the difference
in the regression sums of squares between the full model (estimating p parameters) and
a reduced model (estimating q parameters), appropriately modified by their degrees of
freedom (p − q) to yield mean squares, are equal to σ2. In addition, if the errors are
normally distributed, then their difference is distributed as σ2χ2

(p−q) independently of s2.

This means that the mean squares can be compared to σ2 with an F (p− q, ν) test, where
ν is the number of degrees of freedom on which σ2 is based, i.e., on the Mean Square Error
(MSE), or s2, for model A.

We discuss the tests for each of these null hypotheses in turn.

4.1 Test for Equivalence of Data Sets

Model A represents the full model. It requires the fitting of four parameters (α1, β1, α2, β2).
Model B is a reduced model; it requires the fitting of only two parameters (α, β). The null
hypothesis of equivalent data sets, is (states) that the data under consideration, which are
designated by two nominally distinct groups and which require two intercepts and two
slopes in model A, can be more parsimoniously explained by a model containing a single
intercept and slope in model B. A test for acceptance or rejection of the null hypothesis
of equivalent data sets can be accomplished using the extra sum of squares principle. Let
the regression sum of squares for model A be denoted as SSRA and regression sum of
squares for model B be denoted as SSRB. Then SSRA − SSRB is the extra sum of
squares due to the inclusion of two intercepts and slopes in model A over the inclusion of a
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single intercept and slope in model B. SSRA is obtained by estimating p = 4 parameters,
yielding (N − p) = (N − 4) residual degrees of freedom. SSRB is obtained by estimating
q = 2 parameters, thus yielding (N − q) = (N − 2) residual degrees of freedom. The
test for SSRA − SSRB, therefore, has p − q = 4 − 2 = 2 degrees of freedom. It can be
shown (Searle, pp 99-105; Draper and Smith, pp 149-51) that if α1 = α2 and β1 = β2 then
E{(SSRA−SSRB)/(p− q = 2)} = σ2. In addition, if the errors are normally distributed,
then SSRA − SSRB is distributed as σ2χ2

(p−q=2) independently of s2. Hence, the mean

square MSR(A−B) = {(SSRA − SSRB)/(p − q = 2)}, can be compared to σ2 with an
F (p − q = 2, ν) test, where ν is the number of degrees of freedom on which σ2 is based,
i.e., on the Mean Square Error (MSE) for model A, designated as MSEA, or s2.

In an alternative formulation (Draper and Smith, p. 151), we arrive at the same con-
clusion by considering the residual sums of squares for each model instead of the regression
sums of squares. The quantity SSEB − SSEA = SSRA − SSRB, and thus, in an obvious
notation, MSE(B−A) = MSR(A−B), and the F statistic is computed exactly as described
above.

4.2 Test for Equivalence of Slopes

Again, model A represents the full model; it requires that four parameters (α1, β1, α2, β2)
be fit to the data. Model C is a reduced model that requires fitting the data with only three
parameters, i.e., with two intercepts and a single slope, which is common to both groups
(α1, α2, β). The null hypothesis of interest here, the hypothesis of equivalent slopes, is
that the data under consideration, which are designated by two nominally distinct groups,
and which require two intercepts and two slopes in model A, can be more parsimoniously
explained by a model that requires two distinct intercepts, but only a single slope common
to both groups, i.e., model C. A test for acceptance or rejection of the null hypothesis
of equivalent slopes can be accomplished using the extra sum of squares principle. As
before, let the regression sum of squares for model A be denoted as SSRA and regression
sum of squares for model C be denoted as SSRC. Then SSRA − SSRC is the extra
sum of squares due to the inclusion of two separate intercepts and slopes in model A over
the inclusion of two intercepts and a single slope in model C. Since SSRA is fit with
p = 4 parameters (yielding (N − p) = (N − 4) residual degrees of freedom) and SSRC

is fit with q = 3 parameters (yielding (N − q) = (N − 3) residual degrees of freedom),
then the test for SSRA − SSRC has p − q = 4 − 3 = 1 degree of freedom. If β1 = β2
then E{SSRA − SSRC/(p − q = 1)} = σ2 (Searle, 1971). If the errors are normally
distributed, then SSRA − SSRC is distributed as σ2χ2

(p−q=1) independently of s2. Thus,

{SSRA − SSRC/(p− q = 1)} can be compared to σ2 with an F (p− q = 1, ν) test, where
ν is the number of degrees of freedom on which σ2 is based, i.e., the Mean Square Error
(MSE) for model A, designated as MSEA, or s2.
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Alternatively, we arrive at the same conclusion by considering the residual sums of
squares for each model instead of the regression sums of squares (Draper and Smith, p.
151). The quantity SSEC − SSEA = SSRA − SSRC; thus, MSE(C−A) = MSR(A−C),
and the F statistic is computed exactly as described above.

4.3 Test for Equivalence of Intercepts

Again, model A represents the full model; four parameters (α1, β1, α2, β2) are fit to the
data. Model D is a reduced model that fits the data with a single, common intercept
and two distinct slopes. It requires a fit using only three parameters (α, β1, β2). The null
hypothesis of interest here, the hypothesis of equivalent intercepts, is that the data which
are designated by two nominally distinct groups, and which require two distinct intercepts
and two distinct slopes, can be more parsimoniously explained by a model that requires
only a single intercept, but with two distinct slopes. A test for acceptance or rejection of
the null hypothesis of equivalent intercepts can again be accomplished using the extra sum
of squares principle. Let the regression sum of squares for model A be denoted as SSRA

and the regression sum of squares for model D be denoted as SSRD. Then SSRA−SSRD

is the extra sum of squares due to the inclusion of two separate intercepts and slopes in
model A over the inclusion of a single intercept and two distinct slopes in model D. Since
SSRA is fit with p = 4 parameters (and yields (N − P ) = (N − 4) residual degrees of
freedom) and SSRD is fit with q = 3 parameters (and yields (N − p) = (N − 3) residual
degrees of freedom), then the test for SSRA − SSRD has p − q = 4 − 3 = 1 degree of
freedom. If α1 = α2 then E{SSRA − SSRD/(p − q = 1)} = σ2, and if the errors are
normally distributed, then SSRA − SSRC is distributed as σ2χ2

(p−q=1) independently of

s2. Hence, {SSRA − SSRD/(p− q = 1)} can be compared to σ2 with an F(p− q = 1, ν)
test, where ν is the number of degrees of freedom on which σ2 is based, i.e., the Mean
Square Error (MSE) for Model A, designated as MSEA, or s2.

Again, we arrive at the same conclusion by considering the residual sums of squares
for each model instead of the regression sums of squares. The quantity SSED − SSEA =
SSRA−SSRD, and thus, MSE(D−A) = MSR(A−D), with the F statistic being computed
exactly as described above.

4.4 Analyses of Variance

Table 2 shows (displays) a composite ANOVA source table for the tests of differences
between model A and reduced models B, C, and D, respectively. The table is divided into
four major ‘rows’, separated by double lines, the first three being further subdivided into
two ‘sub-rows’. Under the “Source of Variation” column, in the first three major rows, we
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list the source of variation as being comprised of two quantities: (1) the variation due to the
estimated parameters in the full model, i.e., a1, b1, a2, and b2, ‘over’ (2) the variation due to
the estimated parameters in the reduced model of interest. The term ‘over’ in this context
means that we determine the variation due to the estimated parameters in the full model A,
‘over and above’ or ‘after’ determining the variation due to the estimated parameters in the
reduced model of interest, B, C or D. For example, in the second major ‘row’, which deals
with the comparison of models A and C, we describe the source of variation as (a1, b1, a2, b2)
over (a1, a2, b). Under the “Sum of Squares” column, in the first three major rows, the
difference in the sums of squares can be formulated in two different, but equivalent, ways:
(1) as the difference in the sums of squares due to regression, or (2) as the difference in
the sums of squares due to error (residual). Thus, for example, in the first ‘sub-row’ of
the second major ‘row’ under the “Sum of Squares” column, we have the SSRA − SSRC.
In our ANCOVA setup, the SSRA is obtained by fitting four parameters to the data.
The SSRC is obtained by fitting three parameters to the same data. Of necessity, the
SSRA ≥ SSRC. In the second sub-row of the second major ‘row’, we have in the “Sum
of Squares” column SSEC − SSEA. Necessarily, the SSEC ≥ SSEA, and this value is
identically equivalent to SSRA−SSRC. That is, SSRA−SSRC ≡ SSEC−SSEA. This
is due to the fact that both models A and C are of full rank and are being fit to the same
data and that SST = SSR + SSE, regardless of the model being fit. (The same reasoning
applies when considering the first and third major rows of Table 2.) The final row under
“Source of Variation” designates the Residual (or Error) variation for our ANCOVA setup.
The residual sum of squares, designated as SSEA, is equal to the total sum of squares,
y
′
y, minus the sum of squares due to regression from model A, SSRA.

The “Degrees of Freedom” column displays the degrees of freedom, df , associated with
the hypothesis of interest, in addition to the df associated with the residuals. For the
hypotheses of interest, these are equal to the number of parameters estimated under model
A, Np(A), minus the number of parameters estimated under reduced models B, C, and
D, respectively. The df associated with the difference between model A and model B is
Np(A)−Np(B) = 2, between model A and model C is Np(A)−Np(C) = 1, and between
model A and model D is Np(A)−Np(D) = 1. The degrees of freedom due to the residuals,
ν, is equal the to number of observations, N , minus the number of parameters fit in model
A, which is always 4. Hence, ν = N − 4.

The “Mean Square” and “F Statistic” columns complete Table 2. The “Mean Square”
column displays the sums of squares divided by their respective degrees of freedom. Searle
(1971, pp 99-100, p.174) shows that SSE/σ2 ∼ χ2

N−r, where r = rank(X) for design matrix
X. In our application X ≡ XA, and it is always true that r = 4; hence SSEA/σ

2 ∼ χ2
N−4,

specifically, that is, as a central χ2 distribution with N − 4 degrees of freedom. This, in
turn, implies that (N − 4)MSEA/σ

2 ∼ χ2
N−4. The MSEA acts as the denominator in

the F tests for the three comparisons of models B, C and D, to model A. Searle (1971,
p.100, p.111, p.175) further shows how the (remaining) regression sums of squares, those
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associated with the hypotheses tests of interest, are distributed as non-central χ2 distri-
butions with their appropriate degrees of freedom (df) and non-centrality parameters λ,
denoted as χ2′(df, λ). Having established that the distributions of the differences in sums of
squares due to regression, i.e., SSRA − SSRB, SSRA − SSRC, and SSRA − SSRD, are
distributed as non-central χ2′(df, λ) distributions and that the sum of squares due to the
residuals, SSEA, is distributed as a central χ2 distribution, with N −4 degrees of freedom,
we now have the components for the mean squares to be used in the F statistics. Searle
(pp 104-20) shows how the F statistics are distributed as non-central F distributions with
their appropriate numerator and denominator degrees of freedom, df1 and df2, and with
their non-centrality parameters, λ, which vary accordingly for the hypothesis being tested,
F
′
(df1, df2, λ). Under certain null hypotheses, the λ’s vanish (i.e., λ = 0). Hence, these

non-central F statistics become central F statistics, thus providing us with tests for the
hypotheses of (1) equivalence of data sets, (2) equivalence of slopes, and (3) equivalence of
intercepts (Searle, p. 104). Thus, in our ANCOVA setup, if the non-centrality parameter,
λ = 0, for a particular hypothesis, then F ∼ Fdf1,N−4 and the probability value for the F
distribution can be obtained.

Table 2: ANOVA Source Table for Tests of Differences Between
Reduced Models B, C, and D Against the Full Model A

Source of Degrees of Sum of Mean F
Variation Freedom Squares Square Statistic

(a1, b1, a2, b2) Np(A)−Np(B) SSRA − SSRB (SSRA − SSRB)/2 MSR(A−B)/MSEA

over (a, b) 4− 2 = 2 SSEB − SSEA (SSEB − SSEA)/2 MSE(B−A)/MSEA

(a1, b1, a2, b2) Np(A)−Np(C) SSRA − SSRC (SSRA − SSRC)/1 MSR(A−C)/MSEA

over (a1, a2, b) 4− 3 = 1 SSEC − SSEA (SSEC − SSEA)/1 MSE(C−A)/MSEA

(a1, b1, a2, b2) Np(A)−Np(D) SSRA − SSRD (SSRA − SSRD)/1 MSR(A−D)/MSEA

over (a, b1, b2) 4− 3 = 1 SSED − SSEA (SSED − SSEA)/1 MSE(D−A)/MSEA

Residual ν = N − 4 SSEA = y′y − SSRA MSEA = SSEA/ν —
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5 Example

Suppose we have 10 observations, two sets of five observations in two groups. Hence, y′ =[
4 7 8 11 15 | 14 17 18 21 24

]
. The | symbol represents the distinction be-

tween the two groups. Let let the regressors be x′ =
[

1 2 3 4 5 | 1 2 3 4 5
]
.

When we fit models A, B, C and D to these data, we produce the outcomes reported in
Table 3. The total sum of squares, uncorrected for the mean, SST, is y′y = 2301. This
value does not change for the four models in this example. However, the sums of squares
due to regression, SSR, and the sums of squares to error (residual), SSE, do change in each
of the models.

For model A, the sum of squares due to regression (SSR) is SSRA = 2297.40, while
the sum of squares due to error (SSE) is SSEA = 3.60. These two sums of squares add
up to the total sum of squares (SST), which is y′y = 2301. For model B, the sum of
squares due to regression (SSR) is SSRB = 2057.10, while the sum of squares due to
error (SSE) is SSEB = 243.90. In model C, the sum of squares due to regression (SSR)
is SSRC = 2297.20, while the sum of squares due to error (SSE) is SSEC = 3.80. And,
for model D, the sum of squares due to regression (SSR) is SSRD = 2248.24, while the
sum of squares due to error (SSE) is SSED = 52.76. In all four cases, the sums of squares
due to regression, SSR, plus the sums of squares due to error, SSE, add up to the total
(uncorrected) sum of squares, SST, i.e., y′y = 2301.

Table 3: ANOVA Source Table for Example Data

Model No. Parms Resid SST SSR SSE
Estimated df

A 4 6 y′y = 2301 SSRA = 2297.40 SSEA = 3.60

B 2 8 y′y = 2301 SSRB = 2057.10 SSEB = 243.90

C 3 7 y′y = 2301 SSRC = 2297.20 SSEC = 3.80

D 3 7 y′y = 2301 SSRD = 2248.24 SSED = 52.76

Next, we perform the tests for the three hypotheses of interest. In Table 4, the difference
in the sum of squares due to regression for model A and the sum of squares due to regression
for model B, SSRA − SSRB, is denoted as SSR(A−B). Similarly, the difference in the
sum of squares due to error for model B and the sum of squares due to error for model
A, SSEB − SSEA, and is denoted as SSE(B−A). These quantities are equal. That is
SSR(A−B) = SSE(B−A). The degrees of freedom associated with the difference between
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model A and model B is Np(A)−Np(B). In this paper it is always true that Np(A) = 4
and Np(B) = 2. Hence, for the problem considered here, Np(A) − Np(B) = (4 − 2) =
2. The difference in the sums of squares for models A and B due to, say, regression is
SSR(A−B) = 240.30. This is identical to the the difference in the sums of squares due to
error for models A and B, SSE(B−A). The mean square for the difference between models
A and B, MSR(A−B), is SSR(A−B)/2 = 240.30/2 = 120.15. The F statistic is obtained
by dividing the mean square due to regression by the mean square error for model A,
MSR(A−B)/MSEA = 120.15/0.6 = 200.25.

The difference in the sum of squares due to regression for model A and the sum of
squares due to regression for model C, SSRA−SSRC, is denoted as SSR(A−C). Similarly,
the difference in the sum of squares due to error for model C and the sum of squares due to
error for model A, SSEC−SSEA, and is denoted as SSE(C−A). These are equivalent; hence
SSR(A−C) = SSE(C−A). The degrees of freedom associated with the difference between
model A and model C is Np(A) − Np(C). In this paper Np(A) = 4 and Np(C) = 3.
Hence, Np(A) − Np(C) = (4 − 3) = 1. The difference in the sums of squares for models
A and C due to regression is SSR(A−C) = 0.20, which is identical to the the difference in
the sums of squares due to error for models A and C, SSE(C−A). The mean square for the
difference between models A and C, MSR(A−C), is SSR(A−C)/1 = 0.20/1 = 0.20. The
F statistic is obtained by dividing the mean square due to regression by the mean square
error for model A, MSR(A−C)/MSEA = 0.20/0.6 = 0.33.

A similar process of reasoning takes place in considering the difference in the sum of
squares due to regression for model A and the sum of squares due to regression for model D,
SSRA−SSRD, denoted by SSR(A−D). The F statistic is obtained by dividing the mean
square due to regression by the mean square error for model A, MSR(A−D)/MSEA =
49.16/0.6 = 81.94.

Table 5 simplifies Table 4 and adds probability values (p values) for the hypothesis tests
of interest. In Table 5 the hypothesis of equivalent data sets is rejected, p < 0.0001. The
hypothesis of equivalent slopes is not rejected, p = 0.5847. The hypothesis of equivalent
intercepts is rejected, p = 0.0001. Therefore, as the p value for equivalent slopes exceeds
0.05, we conclude that the eqslo data are best explained by the model that allows for two
statistically distinct intercepts and a common slope, i.e., model C.
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Table 4: ANOVA Source Table for Tests of Differences Between
Reduced Models B, C, and D Against the Full Model A with Example Data

Source of Degrees of Sum of Mean F
Variation Freedom Squares Square Statistic

(a1, b1, a2, b2) Np(A)−Np(B) SSR(A−B) = 240.30 MSR(A−B) = 120.15 Freg(A−B)
= 200.25

over (a, b) 2 SSE(B−A) = 240.30 MSE(B−A) = 120.15 Ferr(B−A)
= 200.25

(a1, b1, a2, b2) Np(A)−Np(C) SSR(A−C) = 0.20 MSR(A−C) = 0.20 Freg(A−C)
= 0.33

over (a1, a2, b) 1 SSE(C−A) = 0.20 MSE(C−A) = 0.20 Ferr(C−A)
= 0.33

(a1, b1, a2, b2) Np(A)−Np(D) SSR(A−D) = 49.16 MSR(A−D) = 49.16 Freg(A−D)
= 81.94

over (a, b1, b2) 1 SSE(D−A) = 49.16 MSE(D−A) = 49.16 Ferr(D−A)
= 81.94

Residual ν = [N −Np(A)] y′y − SSRA MSEA —

(10 - 4) = 6 (2301 - 2297.4) = 3.6 = 0.6 —

Table 5: ANOVA Source Table for Tests of Differences Between
Reduced Models B, C, and D Against the Full Model A with Example Data

H0 df SS MS F Prob

Equivalent Data Sets 2 240.30 120.15 200.25 < 0.0001
Equivalent Slopes 1 0.20 0.20 0.33 0.5847
Equivalent Intercepts 1 49.16 49.16 81.94 0.0001

Residual 6 3.6 0.6

6 The sla Package

6.1 Application to the eqslo data frame

We examine the example problem with the sla package. The eqslo data frame consists
of three columns. The first column has class factor with two levels. The second column
contains the x, or predictor (regressor) variable, and the third column contains the y, or
criterion variable. The data in the eqslo data frame are contrived to provide statistically
different intercepts with a single slope.

library(sla)

Call the eqslo data frame into the workspace and display it.
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data(eqslo)

eqslo

## group x y

## 1 one 1 4

## 2 one 2 7

## 3 one 3 8

## 4 one 4 11

## 5 one 5 15

## 6 two 1 14

## 7 two 2 17

## 8 two 3 18

## 9 two 4 21

## 10 two 5 24

Execute the sla function on the eqslo data frame. Call this object obj.

obj <- sla(eqslo)

The print function for the object yields

obj

##

## Call: sla.default(facxy = eqslo)

##

## Coefficients for Models A, B, C and D:

##

## Model A:

## Int_1 Slo_1 Int_2 Slo_2

## 1.2 2.6 11.6 2.4

##

## Model B:

## Com_Int Com_Slo

## 6.4 2.5

##

## Model C:

## Int_1 Int_2 Com_Slo

## 1.5 11.3 2.5

##

## Model D:
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## Com_Int Slo_1 Slo_2

## 6.400000 1.181818 3.818182

The print function for the object obj displays the call and the coefficients for models A, B,
C, and D, respectively. Under model A, two lines are fit through the data. The estimated
intercept and slope for the first group are a1 = 1.2 and b1 = 2.6. The estimated intercept
and slope for the second group are a2 = 11.6 and b2 = 2.4. For model B, the estimates for
the intercept and slope (for both groups combined) are a = 6.4 and b = 2.5. For model
C, the estimates for the two intercepts are a1 = 1.5 and a2 = 11.3. The estimate for the
common slope is b = 2.5. Finally, for model D, the estimate for the common intercept is
a = 6.4, while the estimates for the slopes are, respectively, b1 = 1.18 and b2 = 3.82.

The summary function displays the call and two tables. The top table provides a brief
description of each model, the number of parameters fit, the residual degrees of freedom,
the residual sum of squares and the residual mean square for models A, B, C and D.
The bottom table provides descriptions for the three tests: (1) equivalent data sets, (2)
equivalent slopes, and (3) equivalent intercepts. It includes the reductions (differences)
in the sums of squares between, respectively, models B, C, and D and model A, the F
statistics, and the probabilities associated with hypotheses.

summary(obj)

##

## Call: sla.default(facxy = eqslo)

##

## Summary of ANCOVA Tests. . .

##

## Description of Fits for 4 ANCOVA Models

##

## Description of Fit Np Res df Res SS Res MS

## 1 Mod A: Ind I,Ind S 4 6 3.60 0.60

## 2 Mod B: Com I,Com S 2 8 243.90 30.49

## 3 Mod C: Ind I,Com S 3 7 3.80 0.54

## 4 Mod D: Com I,Ind S 3 7 52.76 7.54

##

## ANCOVA Tests: Two Groups/Straight Line Fits

##

## Test df SS F Stat prob

## 1 Ho: Equiv D.Sets 2 240.30 200.25 0.0000

## 2 Ho: Equiv Slopes 1 0.20 0.33 0.5847

## 3 Ho: Equiv Inters 1 49.16 81.94 0.0001
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In this problem, the data were contrived to yield statistically equivalent slopes with
statistically different intercepts. The hypothesis for equivalent data sets is rejected (at the
α = 0.05 level), p = 0.0000. The hypothesis for equivalent slopes is not rejected, p =
0.5847. The hypothesis for equivalent slopes is rejected, p = 0.0001.

The plot function plots the data evaluated in the sla object, along with the fitted lines
for the model specified in the modelType2Plot argument. The default selection is ’A’. For
the current problem, we view all four plots with the following code chunk (Figure 2):

par(mfrow = c(2, 2))

plot(obj, modelType2Plot = 'A')

plot(obj, modelType2Plot = 'B')

plot(obj, modelType2Plot = 'C')

plot(obj, modelType2Plot = 'D')

6.2 Application to the whiteside data frame

We next apply the sla package to the whiteside data frame discussed in Section 6.1 of
Modern Applied Statistics with S (Venables and Ripley, 2002, pp 139-44). The whiteside

data frame consists of three columns. The first column is a factor variable, Insul, at two
levels, Before and After. The second column contains the predictor (regressor) variable,
Temp, and the third column contains the criterion variable, Gas.

library(sla)

library(MASS)

data(whiteside)

Apply the sla function to the whiteside data frame; call this object wsobj.

wsobj <- sla(whiteside)

The print function for the object yields

wsobj

##

## Call: sla.default(facxy = whiteside)

##

## Coefficients for Models A, B, C and D:

##

## Model A:
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Figure 2: Four models of interest fit to the eqslo data: (A) Individual intercepts and
individual slopes, (B) Single intercept and single slope, (C) Individual intercepts and single
slope, (D) Single intercept and individual slopes.
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## Int_1 Slo_1 Int_2 Slo_2

## 6.8538277 -0.3932388 4.7238497 -0.2779350

##

## Model B:

## Com_Int Com_Slo

## 5.4861933 -0.2902082

##

## Model C:

## Int_1 Int_2 Com_Slo

## 6.551329 4.986124 -0.336697

##

## Model D:

## Com_Int Slo_1 Slo_2

## 5.6397812 -0.2155722 -0.4319765

The print function for the object wsobj displays the call and the coefficients for models
A, B, C, and D, respectively. Under model A, two unconstrained lines are fit through
the data. The estimated intercept and slope for the Before group are a1 = 6.854 and
b1 = −0.393, while the estimated intercept and slope for the After group are a2 = 4.724
and b2 = −0.278.

Greater detail regarding various aspects of the wsobj object can be obtained by interogating
its attributes.

attributes(wsobj)

## $names

## [1] "Call" "INPUT.df"

## [3] "Summary of Input Data Frame" "Mod.A"

## [5] "Mod.B" "Mod.C"

## [7] "Mod.D" "Fit.Table"

## [9] "Test.Table" "Fit.Table.Pretty"

## [11] "Test.Table.Pretty"

##

## $class

## [1] "sla"

For example, suppose we are interested in further exploring a summary of the full model,
i.e., model A. The following command produces essentially the same output as that ob-
tained by Venables and Ripley (p. 142) for their gasBA object.
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summary(wsobj$Mod.A)

##

## Call:

## lm(formula = y ~ X.A - 1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.97802 -0.18011 0.03757 0.20930 0.63803

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## X.Ai1 6.85383 0.13596 50.41 <2e-16

## X.Ai1x -0.39324 0.02249 -17.49 <2e-16

## X.Ai2 4.72385 0.11810 40.00 <2e-16

## X.Ai2x -0.27793 0.02292 -12.12 <2e-16

##

## Residual standard error: 0.323 on 52 degrees of freedom

## Multiple R-squared: 0.9946,Adjusted R-squared: 0.9942

## F-statistic: 2391 on 4 and 52 DF, p-value: < 2.2e-16

The summary function for this object once again displays the call and two tables. The top
table (essentially wsobj$Fit.Table.Pretty) provides a brief description of each model,
the number of parameters fit, the residual degrees of freedom, the residual sum of squares
and the residual mean square for models A, B, C and D. The bottom table (essentially
wsobj$Test.Table.Pretty) provides description for the three tests: (1) equivalent data
sets, (2) equivalent slopes, and (3) equivalent intercepts. It includes the reductions (differ-
ences) in the sums of squares between, respectively, models B, C, and D and model A, the
F statistics, and the probabilities associated with hypotheses.

summary(wsobj)

##

## Call: sla.default(facxy = whiteside)

##

## Summary of ANCOVA Tests. . .

##

## Description of Fits for 4 ANCOVA Models

##

## Description of Fit Np Res df Res SS Res MS

## 1 Mod A: Ind I,Ind S 4 52 5.43 0.10
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## 2 Mod B: Com I,Com S 2 54 39.99 0.74

## 3 Mod C: Ind I,Com S 3 53 6.77 0.13

## 4 Mod D: Com I,Ind S 3 53 20.02 0.38

##

## ANCOVA Tests: Two Groups/Straight Line Fits

##

## Test df SS F Stat prob

## 1 Ho: Equiv D.Sets 2 34.57 165.67 0e+00

## 2 Ho: Equiv Slopes 1 1.35 12.89 7e-04

## 3 Ho: Equiv Inters 1 14.59 139.88 0e+00

For the whiteside data, the null hypotheses for equivalent (1) data sets, (2) slopes, and
(3) intercepts are all rejected. The hypothesis for equivalent data sets is rejected, p <<
0.0000. The hypothesis for equivalent slopes is also rejected, p = 0.0007307. The following
command, which makes use of two of the attributes of wsobj, reproduces Venables and
Ripley’s (2002) results on page 143.

anova(wsobj$Mod.C, wsobj$Mod.A)

## Analysis of Variance Table

##

## Model 1: y ~ X.C - 1

## Model 2: y ~ X.A - 1

## Res.Df RSS Df Sum of Sq F Pr(>F)

## 1 53 6.7704

## 2 52 5.4252 1 1.3451 12.893 0.0007307

Finally, the hypothesis of equivalent intercepts is rejected, p << 0.0000. In summary, we
conclude that model A, the full model, is the best-fitting model for the whiteside data.
We agree with the conclusion of Venables and Ripley (p. 143) that “. . . separate slopes
are indeed necessary.” A plot of model A is obtained with command:

plot(wsobj, mod = 'A')

Figure 3 displays the whiteside data with the fitted regression lines for model A.
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Figure 3: Model A: Individual intercepts and individual slopes for the whiteside data.
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