R/utilities_math.R

Defines functions rbind_fill splitIntoChunks princarg warpMatrix identifyAndPlay parabPeakInterpol switchColorTheme logMatrix pDistr gaussianSmooth2D sampleModif interpolMatrix reportCI getSigmoid isCentral.localMax clumper addVectors matchLengths getIntegerRandomWalk getRandomWalk Mode rnorm_truncated getEntropy log01 zeroOne listDepth to_dB hz2mel ERBToHz HzToERB notesToHz HzToNotes semitonesToHz HzToSemitones convert_sec_to_hms reportTime

Documented in addVectors clumper convert_sec_to_hms ERBToHz gaussianSmooth2D getEntropy getIntegerRandomWalk getRandomWalk getSigmoid hz2mel HzToERB HzToNotes HzToSemitones identifyAndPlay interpolMatrix isCentral.localMax listDepth log01 logMatrix matchLengths Mode notesToHz parabPeakInterpol pDistr princarg rbind_fill reportCI reportTime rnorm_truncated sampleModif semitonesToHz splitIntoChunks switchColorTheme to_dB warpMatrix zeroOne

### UTILITIES FOR LOW-LEVEL MATH ###

#' Report time
#'
#' Provides a nicely formatted "estimated time left" in loops plus a summary
#' upon completion.
#' @param i current iteration
#' @param time_start time when the loop started running
#' @param nIter total number of iterations
#' @param reportEvery report progress every n iterations
#' @param jobs vector of length \code{nIter} specifying the relative difficulty
#'   of each iteration. If not NULL, estimated time left takes into account
#'   whether the jobs ahead will take more or less time than the jobs already
#'   completed
#' @param prefix a string to print before "Done...", eg "Chain 1: "
#' @export
#' @examples
#' time_start = proc.time()
#' for (i in 1:100) {
#'   Sys.sleep(i ^ 1.02 / 10000)
#'   reportTime(i = i, time_start = time_start, nIter = 100,
#'     jobs = (1:100) ^ 1.02, prefix = 'Chain 1: ')
#' }
#' \dontrun{
#' # Unknown number of iterations:
#' time_start = proc.time()
#' for (i in 1:20) {
#'   Sys.sleep(i ^ 2 / 10000)
#'   reportTime(i = i, time_start = time_start,
#'   jobs = (1:20) ^ 2, reportEvery = 5)
#' }
#'
#' # when analyzing a bunch of audio files, their size is a good estimate
#' # of how long each will take to process
#' time_start = proc.time()
#' filenames = list.files('~/Downloads/temp', pattern = "*.wav|.mp3",
#'   full.names = TRUE)
#' filesizes = file.info(filenames)$size
#' for (i in 1:length(filenames)) {
#'   # ...do what you have to do with each file...
#'   reportTime(i = i, nIter = length(filenames),
#'              time_start = time_start, jobs = filesizes)
#' }
#' }
reportTime = function(
  i,
  time_start,
  nIter = NULL,
  reportEvery = NULL,
  jobs = NULL,
  prefix = ''
) {
  time_diff = as.numeric((proc.time() - time_start)[3])
  if (is.null(reportEvery))
    reportEvery = ifelse(is.null(nIter),
                         1,
                         max(1, 10 ^ (floor(log10(nIter)) - 1)))
  if (is.null(nIter)) {
    # number of iter unknown, so we just report time elapsed
    if (i %% reportEvery == 0) {
      print(paste0(prefix, 'Completed ', i, ' iterations in ',
                   convert_sec_to_hms(time_diff)))
    }
  } else {
    # we know how many iter, so we also report time left
    if (i == nIter) {
      time_total = convert_sec_to_hms(time_diff)
      print(paste0(prefix, 'Completed ', i, ' iterations in ', time_total, '.'))
    } else {
      if (i %% reportEvery == 0 || i == 1) {
        if (is.null(jobs)) {
          # simply count iterations
          time_left = time_diff / i * (nIter - i)
        } else {
          # take into account the expected time for each iteration
          speed = time_diff / sum(jobs[1:i])
          time_left = speed * sum(jobs[min((i + 1), nIter):nIter])
        }
        time_left_hms = convert_sec_to_hms(time_left)
        print(paste0(prefix, 'Done ', i, ' / ', nIter, '; Estimated time left: ', time_left_hms))
      }
    }
  }
}


#' Print time
#'
#' Internal soundgen function.
#'
#' Converts time in seconds to time in y m d h min s for pretty printing.
#' @param time_s time (s)
#' @param digits number of digits to preserve for s (1-60 s)
#' @return Returns a character string like "1 h 20 min 3 s"
#' @keywords internal
#' @examples
#' time_s = c(.0001, .01, .33, .8, 2.135, 5.4, 12, 250, 3721, 10000,
#'            150000, 365 * 24 * 3600 + 35 * 24 * 3600 + 3721)
#' soundgen:::convert_sec_to_hms(time_s)
#' soundgen:::convert_sec_to_hms(time_s, 2)
convert_sec_to_hms = function(time_s, digits = 0) {
  if (!any(time_s > 1)) {
    output = paste(round(time_s * 1000), 'ms')
  } else {
    len = length(time_s)
    output = vector('character', len)
    for (i in 1:len) {
      # years = time_s %/% 31536000
      # years_string = ifelse(years > 0, paste(years, 'y '), '')
      #
      # months = time_s %/% 2592000 - years * 12
      # months_string = ifelse(months > 0, paste(months, 'm '), '')
      days_string = hours_string = minutes_string = seconds_string = ms_string = ''
      days = time_s[i] %/% 86400
      if (days > 0) days_string = paste(days, 'd ')

      hours = time_s[i] %/% 3600 - days * 24
      if (hours > 0) hours_string = paste(hours, 'h ')

      if (days == 0) {
        minutes = time_s[i] %/% 60 - days * 1440 - hours * 60
        if (minutes > 0) minutes_string = paste(minutes, 'min ')

        if (hours == 0) {
          seconds = time_s[i] - days * 86400 - hours * 3600 - minutes * 60
          seconds_floor = floor(seconds)
          if (seconds_floor > 0) seconds_string = paste(round(seconds, digits), 's ')

          if (minutes == 0 & seconds_floor == 0) {
            ms = (time_s[i] %% 1) * 1000
            if (ms > 0) ms_string = paste(ms, 'ms')
          }
        }
      }
      output[i] = paste0(days_string, hours_string,
                         minutes_string, seconds_string, ms_string)
    }
  }
  output = trimws(output)
  return(output)
}


#' Convert Hz to semitones
#'
#' Converts from Hz to semitones above C-5 (~0.5109875 Hz) or another reference
#' frequency. This may not seem very useful, but note that this gives us a nice
#' logarithmic scale for generating natural pitch transitions.
#'
#' @seealso \code{\link{semitonesToHz}} \code{\link{HzToNotes}}
#'
#' @param h vector or matrix of frequencies (Hz)
#' @param ref frequency of the reference value (defaults to C-5, 0.51 Hz)
#' @export
#' @examples
#' s = HzToSemitones(c(440, 293, 115))
#' # to convert to musical notation
#' notesDict$note[1 + round(s)]
#' # note the "1 +": semitones ABOVE C-5, i.e. notesDict[1, ] is C-5
#'
#' # Any reference tone can be specified. For ex., for semitones above C0, use:
#' HzToSemitones(440, ref = 16.35)
#' # TIP: see notesDict for a table of Hz frequencies to musical notation
HzToSemitones = function(h, ref = 0.5109875) {
  return(log2(h / ref) * 12)
}

#' Convert semitones to Hz
#'
#' Converts from semitones above C-5 (~0.5109875 Hz) or another reference
#' frequency to Hz. See \code{\link{HzToSemitones}}
#'
#' @seealso \code{\link{HzToSemitones}}
#'
#' @param s vector or matrix of frequencies (semitones above C0)
#' @param ref frequency of the reference value (defaults to C-5, 0.51 Hz)
#' @export
semitonesToHz = function(s, ref = 0.5109875) {
  return(ref * 2 ^ (s / 12))
}


#' Convert Hz to notes
#'
#' Converts from Hz to musical notation like A4 - note A of the fourth octave
#' above C0 (16.35 Hz).
#'
#' @seealso \code{\link{notesToHz}} \code{\link{HzToSemitones}}
#'
#' @param h vector or matrix of frequencies (Hz)
#' @param showCents if TRUE, show cents to the nearest notes (cent = 1/100 of a
#'   semitone)
#' @param A4 frequency of note A in the fourth octave (modern standard ISO 16 or
#'   concert pitch = 440 Hz)
#' @export
#' @examples
#' HzToNotes(c(440, 293, 115, 16.35, 4))
#'
#' HzToNotes(c(440, 415, 80, 81), showCents = TRUE)
#' # 80 Hz is almost exactly midway (+49 cents) between D#2 and E2
#'
#' # Baroque tuning A415, half a semitone flat relative to concert pitch A440
#' HzToNotes(c(440, 415, 16.35), A4 = 415)
HzToNotes = function(h, showCents = FALSE, A4 = 440) {
  ref = A4 / 861.0779
  # C4 is 9 semitones below A4 (2^(9/12) * 512 = 861.0779), then another 9 octaves
  # down to C-5 in notesDict
  sem = log2(h / ref) * 12
  round_sem = round(sem)
  nearest_note = soundgen::notesDict$note[1 + round_sem]
  if (showCents) {
    cents = paste0(' ', as.character(round((sem - round_sem) * 100)))
    cents[cents == ' 0'] = ''
    nearest_note = paste0(nearest_note, cents)
  }
  return(nearest_note)
}


#' Convert notes to Hz
#'
#' Converts to Hz from musical notation like A4 - note A of the fourth octave
#' above C0 (16.35 Hz).
#'
#' @seealso \code{\link{HzToNotes}} \code{\link{HzToSemitones}}
#'
#' @param n vector or matrix of notes
#' @param A4 frequency of note A in the fourth octave (modern standard ISO 16 or
#'   concert pitch = 440 Hz)
#' @export
#' @examples
#' notesToHz(c("A4", "D4", "A#2", "C0", "C-2"))
#'
#' # Baroque tuning A415, half a semitone flat relative to concert pitch A440
#' notesToHz(c("A4", "D4", "A#2", "C0", "C-2"), A4 = 415)
notesToHz = function(n, A4 = 440) {
  soundgen::notesDict$freq[match(n, soundgen::notesDict$note)] * A4 / 440
}


#' Convert Hz to ERB rate
#'
#' Converts from Hz to the number of Equivalent Rectangular Bandwidths (ERBs)
#' below input frequency. See https://www2.ling.su.se/staff/hartmut/bark.htm and
#' https://en.wikipedia.org/wiki/Equivalent_rectangular_bandwidth
#'
#' @seealso \code{\link{ERBToHz}} \code{\link{HzToSemitones}}
#'   \code{\link{HzToNotes}}
#'
#' @param h vector or matrix of frequencies (Hz)
#' @param method approximation to use
#' @export
#' @examples
#' HzToERB(c(-20, 20, 100, 440, 1000, NA))
#'
#' f = 20:20000
#' erb_lin = HzToERB(f, 'linear')
#' erb_quadratic = HzToERB(f, 'quadratic')
#' plot(f, erb_lin, log = 'x', type = 'l')
#' points(f, erb_quadratic, col = 'blue', type = 'l')
#'
#' # compare with the bark scale:
#' barks = tuneR::hz2bark(f)
#' points(f, barks / max(barks) * max(erb_lin),
#'   col = 'red', type = 'l', lty = 2)
HzToERB = function(h,
                   method = c('linear', 'quadratic')[1]) {
  if (method == 'linear') {
    erb = 21.4 * log10(1 + .00437 * h)
  } else if (method == 'quadratic') {
    # erb = 11.17 * log( (h + 312) / (h + 14675)) + 43
    erb = 11.17268 * log(1 + (46.06538 * h) / (h + 14678.49))
  }
  return(erb)
}


#' Convert Hz to ERB rate
#'
#' Converts from Hz to the number of Equivalent Rectangular Bandwidths (ERBs)
#' below input frequency. See https://www2.ling.su.se/staff/hartmut/bark.htm and
#' https://en.wikipedia.org/wiki/Equivalent_rectangular_bandwidth
#'
#' @seealso \code{\link{HzToERB}} \code{\link{HzToSemitones}}
#'   \code{\link{HzToNotes}}
#'
#' @param e vector or matrix of frequencies in ERB rate
#' @param method approximation to use
#' @export
#' @examples
#' freqs_Hz = c(-20, 20, 100, 440, 1000, 20000, NA)
#' e_lin = HzToERB(freqs_Hz, 'linear')
#' ERBToHz(e_lin, 'linear')
#'
#' e_quad = HzToERB(freqs_Hz, 'quadratic')
#' ERBToHz(e_quad, 'quadratic')
ERBToHz = function(e,
                   method = c('linear', 'quadratic')[1]) {
  if (method == 'linear') {
    h = (10 ^ (e / 21.4) - 1) / .00437
  } else if (method == 'quadratic') {
    h = 676170.4 / (47.06538 - exp(e * 0.08950404)) - 14678.49
  }
  return(h)
}


#' Hz to mel
#'
#' Internal soundgen function: a temporary fix needed because tuneR::hz2mel
#' doesn't accept NAs.
#' @param f frequency, Hz
#' @param htk algrithm
#' @keywords internal
#' @examples
#' soundgen:::hz2mel(c(440, NA))
hz2mel = function(f, htk = FALSE) {
  # if (!is.numeric(f) || f < 0)
  #     stop("frequencies have to be non-negative")
  idx_nonFinite = which(!is.finite(f))
  f[idx_nonFinite] = 0
  if (htk) {
    z <- 2595 * log10(1 + f/700)
  }
  else {
    f_0 <- 0
    f_sp <- 200/3
    brkfrq <- 1000
    brkpt <- (brkfrq - f_0)/f_sp
    logstep <- exp(log(6.4)/27)
    linpts <- (f < brkfrq)
    z <- 0 * f
    z[linpts] <- (f[linpts] - f_0)/f_sp
    z[!linpts] <- brkpt + (log(f[!linpts]/brkfrq))/log(logstep)
  }
  z[idx_nonFinite] = NA
  return(z)
}


#' Convert to dB
#'
#' Internal soundgen function.
#' @param x a vector of floats between 0 and 1 (exclusive, i.e. these are ratios)
#' @keywords internal
#' @examples
#' soundgen:::to_dB(c(.1, .5, .75, .9, .95, .99, .999, .9999))
to_dB = function(x) {
  return(10 * log10(x / (1 - x)))
}

#' List depth
#'
#' Internal soundgen function
#'
#' Returns the depth of list structure. See https://stackoverflow.com/questions/13432863/determine-level-of-nesting-in-r
#' @param x any R object
#' @keywords internal
listDepth = function(x) ifelse(is.list(x), 1L + max(sapply(x, listDepth)), 0L)


#' Normalize 0 to 1
#'
#' Internal soundgen function
#'
#' Normalized input vector to range from 0 to 1
#' @param x numeric vector or matrix
#' @param na.rm if TRUE, removed NA's when calculating min/max for normalization
#' @param xmin,xmax min and max (to save time if already known)
#' @keywords internal
zeroOne = function(x, na.rm = FALSE, xmin = NULL, xmax = NULL) {
  if (is.null(xmin)) xmin = min(x, na.rm = na.rm)
  if (is.null(xmax)) xmax = max(x, na.rm = na.rm)
  x = x - xmin
  x = x / (xmax - xmin)
  return(x)
}

#' log01
#'
#' Internal soundgen function
#'
#' Normalizes, log-transforms, and re-normalizes an input vector, so it ranges
#' from 0 to 1
#' @param v numeric vector
#' @keywords internal
#' @examples
#' v = exp(1:10)
#' soundgen:::log01(v)
log01 = function(v) {
  v = v - min(v) + 1
  v = log(v)
  v = zeroOne(v)
  return(v)
}


#' Entropy
#'
#' Returns Weiner or Shannon entropy of an input vector such as the spectrum of
#' a sound. Non-positive input values are converted to a small positive number
#' (convertNonPositive). If all elements are zero, returns NA.
#'
#' @param x vector of positive floats
#' @param type 'shannon' for Shannon (information) entropy, 'weiner' for Weiner
#'   entropy
#' @param normalize if TRUE, Shannon entropy is normalized by the length of
#'   input vector to range from 0 to 1. It has no affect on Weiner entropy
#' @param convertNonPositive all non-positive values are converted to
#'   \code{convertNonPositive}
#' @export
#' @examples
#' # Here are four simplified power spectra, each with 9 frequency bins:
#' s = list(
#'   c(rep(0, 4), 1, rep(0, 4)),       # a single peak in spectrum
#'   c(0, 0, 1, 0, 0, .75, 0, 0, .5),  # perfectly periodic, with 3 harmonics
#'   rep(0, 9),                        # a silent frame
#'   rep(1, 9)                         # white noise
#' )
#'
#' # Weiner entropy is ~0 for periodic, NA for silent, 1 for white noise
#' sapply(s, function(x) round(getEntropy(x), 2))
#'
#' # Shannon entropy is ~0 for periodic with a single harmonic, moderate for
#' # periodic with multiple harmonics, NA for silent, highest for white noise
#' sapply(s, function(x) round(getEntropy(x, type = 'shannon'), 2))
#'
#' # Normalized Shannon entropy - same but forced to be 0 to 1
#' sapply(s, function(x) round(getEntropy(x,
#'   type = 'shannon', normalize = TRUE), 2))
getEntropy = function(x,
                      type = c('weiner', 'shannon')[1],
                      normalize = FALSE,
                      convertNonPositive = 1e-10) {
  if (sum(x) == 0) return (NA)  # empty frames
  x = ifelse(x <= 0, convertNonPositive, x)  # otherwise log0 gives NaN
  if (type == 'weiner') {
    geom_mean = exp(mean(log(x)))
    ar_mean = mean(x)
    entropy = geom_mean / ar_mean
  } else if (type == 'shannon') {
    p = x / sum(x)
    if (normalize) {
      entropy = -sum(p * log2(p) / log(length(p)) * log(2))
    } else {  # unnormalized
      entropy = -sum(p * log2(p))
    }
  } else {
    stop('Implemented entropy types: "shannon" or "weiner"')
  }
  return (entropy)
}


#' Random draw from a truncated normal distribution
#'
#' \code{rnorm_truncated} generates random numbers from a normal distribution
#' using rnorm(), but forced to remain within the specified low/high bounds. All
#' proposals outside the boundaries (exclusive) are discarded, and the sampling
#' is repeated until there are enough values within the specified range. Fully
#' vectorized.
#'
#' @param n the number of values to return
#' @param mean the mean of the normal distribution from which values are
#'   generated (vector of length 1 or n)
#' @param sd the standard deviation of the normal distribution from which values
#'   are generated (vector of length 1 or n)
#' @param low,high exclusive lower and upper bounds ((vectors of length 1 or n))
#' @param roundToInteger boolean vector of length 1 or n. If TRUE, the
#'   corresponding value is rounded to the nearest integer.
#' @inheritParams soundgen
#' @return A vector of length n.
#' @keywords internal
#' @examples
#' soundgen:::rnorm_truncated(n = 3, mean = 10, sd = 5, low = 7, high = NULL,
#'   roundToInteger = c(TRUE, FALSE, FALSE))
#' soundgen:::rnorm_truncated(n = 9, mean = c(10, 50, 100), sd = c(5, 0, 20),
#'   roundToInteger = TRUE) # vectorized
#' # in case of conflicts between mean and bounds, either adjust the mean:
#' soundgen:::rnorm_truncated(n = 3, mean = 10, sd = .1,
#'   low = c(15, 0, 0), high = c(100, 100, 8), invalidArgAction = 'adjust')
#' #... or ignore the boundaries
#' soundgen:::rnorm_truncated(n = 3, mean = 10, sd = .1,
#'   low = c(15, 0, 0), high = c(100, 100, 8), invalidArgAction = 'ignore')
rnorm_truncated = function(n = 1,
                           mean = 0,
                           sd = 1,
                           low = NULL,
                           high = NULL,
                           roundToInteger = FALSE,
                           invalidArgAction = c('adjust', 'abort', 'ignore')[1]) {
  if (length(mean) < n) mean = spline(mean, n = n)$y
  if (length(sd) < n) sd = spline(sd, n = n)$y
  if (any(!is.finite(sd))) sd = mean / 10
  sd[sd < 0] = 0

  if (sum(sd != 0) == 0) {
    out = mean
    out[roundToInteger] = round(out[roundToInteger], 0)
    return (out)
  }

  if (is.null(low) & is.null(high)) {
    out = rnorm(n, mean, sd)
    out[roundToInteger] = round (out[roundToInteger], 0)
    return (out)
  }

  if (is.null(low)) low = rep(-Inf, n)
  if (is.null(high)) high = rep(Inf, n)
  if (length(low) == 1) low = rep(low, n)
  if (length(high) == 1) high = rep(high, n)


  if (any(mean > high | mean < low)) {
    warning(paste('Some of the specified means are outside the low/high bounds!',
                  'Mean =', paste(head(mean, 3), collapse = ', '),
                  'Low =', paste(head(low, 3), collapse = ', '),
                  'High = ', paste(head(high, 3), collapse = ', ')))
    if (invalidArgAction == 'abort') {
      stop('Aborting rnorm_truncated()')
    } else if (invalidArgAction == 'adjust') {
      mean[mean < low] = low[mean < low]
      mean[mean > high] = high[mean > high]
    } else if (invalidArgAction == 'ignore') {
      low = rep(-Inf, n)
      high = rep(Inf, n)
    }
  }

  out = rnorm(n, mean, sd)
  out[roundToInteger] = round(out[roundToInteger], 0)
  for (i in 1:n) {
    while (out[i] < low[i] | out[i] > high[i]) {
      out[i] = rnorm(1, mean[i], sd[i]) # repeat until a suitable value is generated
      out[roundToInteger] = round(out[roundToInteger], 0)
    }
  }
  return(out)
}


#' Modified mode
#'
#' Internal soundgen function
#'
#' Internal helper function for spectral (~BaNa) pitch tracker. NOT quite the same as simply mode(x).
#' @param x numeric vector
#' @keywords internal
#' @examples
#' soundgen:::Mode(c(1, 2, 3))  # if every element is unique, return the smallest
#' soundgen:::Mode(c(1, 2, 2, 3))
Mode = function(x) {
  x = sort(x)
  ux = unique(x)
  if (length(ux) < length(x)) {
    return(ux[which.max(tabulate(match(x, ux)))])
  } else {
    # if every element is unique, return the smallest
    return(x[1])
  }
}


#' Random walk
#'
#' Generates a random walk with flexible control over its range, trend, and
#' smoothness. It works by calling stats::rnorm at each step and taking a
#' cumulative sum of the generated values. Smoothness is controlled by initially
#' generating a shorter random walk and upsampling.
#' @param len an integer specifying the required length of random walk. If len
#'   is 1, returns a single draw from a gamma distribution with mean=1 and
#'   sd=rw_range
#' @param rw_range the upper bound of the generated random walk (the lower bound
#'   is set to 0)
#' @param rw_smoothing specifies the amount of smoothing, basically the number
#'   of points used to construct the rw as a proportion of len, from 0 (no
#'   smoothing) to 1 (maximum smoothing to a straight line)
#' @param method specifies the method of smoothing: either linear interpolation
#'   ('linear', see stats::approx) or cubic splines ('spline', see
#'   stats::spline)
#' @param trend mean of generated normal distribution (vectors are also
#'   acceptable, as long as their length is an integer multiple of len). If
#'   positive, the random walk has an overall upwards trend (good values are
#'   between 0 and 0.5 or -0.5). Trend = c(1,-1) gives a roughly bell-shaped rw
#'   with an upward and a downward curve. Larger absolute values of trend
#'   produce less and less random behavior
#' @return Returns a numeric vector of length len and range from 0 to rw_range.
#' @export
#' @examples
#' plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = 0))
#' plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = .2))
#' plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = .95))
#' plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = .99))
#' plot(getRandomWalk(len = 1000, rw_range = 5, rw_smoothing = 1))
#' plot(getRandomWalk(len = 1000, rw_range = 15,
#'   rw_smoothing = .2, trend = c(.1, -.1)))
#' plot(getRandomWalk(len = 1000, rw_range = 15,
#'   rw_smoothing = .2, trend = c(15, -1)))
getRandomWalk = function(len,
                         rw_range = 1,
                         rw_smoothing = .2,
                         method = c('linear', 'spline')[2],
                         trend = 0) {
  if (len < 2)
    return(rgamma(1, 1 / rw_range ^ 2, 1 / rw_range ^ 2))

  # generate a random walk (rw) of length depending on rw_smoothing,
  # then linear extrapolation to len
  # n = floor(max(2, 2 ^ (1 / rw_smoothing)))
  # n = 2 + (len - 1) / (1 + exp(10 * (rw_smoothing - .1)))
  n = max(2, len * (1 - rw_smoothing))
  if (length(trend) > 1) {
    n = round(n / 2, 0) * 2 # force to be even
    trend_short = rep(trend, each = n / length(trend))
    # for this to work, length(trend) must be a multiple of n.
    # In practice, specify trend of length 2
  } else {
    trend_short = trend
  }

  if (n > len) {
    rw_long = cumsum(rnorm(len, trend_short)) # just a rw of length /len/
  } else {
    # get a shorter sequence and extrapolate, thus achieving
    # more or less smoothing
    rw_short = cumsum(rnorm(n, trend_short)) # plot(rw_short, type = 'l')
    if (method == 'linear') {
      rw_long = approx(rw_short, n = len)$y
    } else if (method == 'spline') {
      rw_long = spline(rw_short, n = len)$y
    }
  } # plot (rw_long, type = 'l')

  # normalize
  rw_normalized = rw_long - min(rw_long)
  rw_normalized = rw_normalized / max(abs(rw_normalized)) * rw_range
  return(rw_normalized)
}


#' Discrete random walk
#'
#' Takes a continuous random walk and converts it to continuous epochs of
#' repeated values 0/1/2, each at least minLength points long. 0/1/2 correspond
#' to different noise regimes: 0 = no noise, 1 = subharmonics, 2 = subharmonics
#' and jitter/shimmer.
#' @param rw a random walk generated by \code{\link{getRandomWalk}} (expected
#'   range 0 to 100)
#' @param nonlinBalance a number between 0 to 100: 0 = returns all zeros;
#'   100 = returns all twos
#' @param minLength the mimimum length of each epoch
#' @param q1,q2 cutoff points for transitioning from regime 0 to 1 (q1) or from
#'   regime 1 to 2 (q2). See noiseThresholdsDict for defaults
#' @param plot if TRUE, plots the random walk underlying nonlinear regimes
#' @return Returns a vector of integers (0/1/2) of the same length as rw.
#' @export
#' @examples
#' rw = getRandomWalk(len = 100, rw_range = 100, rw_smoothing = .2)
#' r = getIntegerRandomWalk(rw, nonlinBalance = 75,
#'                          minLength = 10, plot = TRUE)
#' r = getIntegerRandomWalk(rw, nonlinBalance = 15,
#'                          q1 = 30, q2 = 70,
#'                          minLength = 10, plot = TRUE)
getIntegerRandomWalk = function(rw,
                                nonlinBalance = 50,
                                minLength = 50,
                                q1 = NULL,
                                q2 = NULL,
                                plot = FALSE) {
  len = length(rw)

  # calculate thresholds for different noise regimes
  if (is.null(q1)) {
    q1 = noiseThresholdsDict$q1[nonlinBalance + 1]
    # +1 b/c the rows indices in noiseThresholdsDict start from 0, not 1
  }
  if (is.null(q2)) {
    q2 = noiseThresholdsDict$q2[nonlinBalance + 1]
  }

  if (nonlinBalance == 0) {
    rw_bin = rep(0, len)
  } else if (nonlinBalance == 100) {
    rw_bin = rep(2, len)
  } else {
    # convert continuous rw to discrete epochs based on q1 and q2 thresholds
    rw_bin = rep(0, len)
    rw_bin[which(rw > q1)] = 1
    rw_bin[which(rw > q2)] = 2   # plot (rw_bin, ylim=c(0,2))

    # make sure each epoch is long enough
    rw_bin = clumper(rw_bin, minLength = minLength)
  }

  if (plot) {
    rw_bin_100 = rw_bin
    rw_bin_100[rw_bin_100 == 1] = q1
    rw_bin_100[rw_bin_100 == 2] = q2

    plot(rw, ylim = c(0, 110), type = 'l', lwd = 1,
         xlab = 'Time', ylab = 'Latent non-linearity', main = 'Random walk')
    points(rw_bin_100, type = 'l', lwd = 4, col = 'blue')
    lines(x = c(0, 100), y = c(q1, q1), lty = 3, lwd = 2, col = 'red')
    text(x = 0, y = q1 + 2, labels = 'subh', pos = 4)
    lines(x = c(0, 100), y = c(q2, q2), lty = 3, lwd = 2, col = 'red')
    text(x = 0, y = q2 + 2, labels = 'subh + jitter', pos = 4)
  }
  return(rw_bin)
}



#' Resize vector to required length
#'
#' Internal soundgen function.
#'
#' Adjusts a vector to match the required length by either trimming one or both
#' ends or padding them with zeros.
#' @param myseq input vector
#' @param len target length
#' @param padDir specifies the affected side. For padding, it is the side on
#'   which new elements will be added. For trimming, this is the side that will
#'   be trimmed. Defaults to 'central'
#' @param padWith if the vector needs to be padded to match the required length,
#'   what should it be padded with? Defaults to 0
#' @return Returns the modified vector of the required length.
#' @keywords internal
#' @examples
#' soundgen:::matchLengths(c(1, 2, 3), len = 5)
#' soundgen:::matchLengths(3:7, len = 3)
#' # trimmed on the left
#' soundgen:::matchLengths(3:7, len = 3, padDir = 'left')
#' # padded with zeros on the left
#' soundgen:::matchLengths(3:7, len = 10, padDir = 'left')
#' #' # trimmed on the right
#' soundgen:::matchLengths(3:7, len = 3, padDir = 'right')
#' # padded with zeros on the right
#' soundgen:::matchLengths(3:7, len = 10, padDir = 'right')
matchLengths = function(myseq,
                        len,
                        padDir = c('left', 'right', 'central')[3],
                        padWith = 0) {
  #  padDir specifies where to cut/add zeros ('left' / 'right' / 'central')
  if (length(myseq) == len) return(myseq)

  if (padDir == 'central') {
    if (length(myseq) < len) {
      myseq = c(rep(padWith, len), myseq, rep(padWith, len))
      # for padding, first add a whole lot of zeros and then trim using the same
      # algorithm as for trimming
    }
    halflen = len / 2
    center = (1 + length(myseq)) / 2
    start = ceiling(center - halflen)
    myseq = myseq[start:(start + len - 1)]
  } else if (padDir == 'left') {
    if (length(myseq) > len) {
      myseq = myseq [(length(myseq) - len + 1):length(myseq)]
    } else {
      myseq = c(rep(padWith, (len - length(myseq))), myseq)
    }
  } else if (padDir == 'right') {
    if (length(myseq) > len) {
      myseq = myseq [1:len]
    } else {
      myseq = c(myseq, rep(padWith, (len - length(myseq))))
    }
  }
  return (myseq)
}


#' Match number of columns
#'
#' Internal soundgen function
#'
#' Adds columns of new values (eg zeros or NAs) to a matrix, so that the new
#' number of columns = \code{len}
#' @inheritParams matchLengths
#' @param matrix_short input matrix
#' @param nCol the required number of columns
#' @param padWith the value to pad with, normally \code{0} or \code{NA}
#' @keywords internal
#' @examples
#' a = matrix(1:9, nrow = 3)
#' soundgen:::matchColumns(a, nCol = 6, padWith = NA, padDir = 'central')
#' soundgen:::matchColumns(a, nCol = 6, padWith = 0, padDir = 'central')
#' soundgen:::matchColumns(a, nCol = 6, padWith = NA, padDir = 'left')
#' soundgen:::matchColumns(a, nCol = 6, padWith = 'a', padDir = 'right')
#' soundgen:::matchColumns(a, nCol = 2)
matchColumns = function (matrix_short,
                         nCol,
                         padWith = 0,
                         padDir = 'central',
                         interpol = c("approx", "spline")[1]) {
  if (ncol(matrix_short) > nCol) {
    # downsample
    new = interpolMatrix(matrix_short, nc = nCol, interpol = interpol)
  } else {
    # pad with 0 / NA / etc
    if (is.null(colnames(matrix_short))) {
      col_short = 1:ncol(matrix_short)
    } else {
      col_short = colnames(matrix_short)
    }
    col_long = matchLengths(col_short, nCol,
                            padDir = padDir, padWith = NA)
    new = matrix(padWith,
                 nrow = nrow(matrix_short),
                 ncol = length(col_long))
    colnames(new) = col_long
    # paste the old matrix where it belongs
    new[, !is.na(colnames(new))] = matrix_short
  }
  return(new)
}


#' Add overlapping vectors
#'
#' Adds two partly overlapping vectors, such as two waveforms, to produce a
#' longer vector. The location at which vector 2 is pasted is defined by
#' insertionPoint. Algorithm: both vectors are padded with zeros to match in
#' length and then added. All NA's are converted to 0.
#'
#' @seealso \code{\link{soundgen}}
#'
#' @param v1,v2 numeric vectors
#' @param insertionPoint the index of element in vector 1 at which vector 2 will
#'   be inserted (any integer, can also be negative)
#' @param normalize if TRUE, the output is normalized to range from -1 to +1
#' @export
#' @examples
#' v1 = 1:6
#' v2 = rep(100, 3)
#' addVectors(v1, v2, insertionPoint = 5, normalize = FALSE)
#' addVectors(v1, v2, insertionPoint = -4, normalize = FALSE)
#' # note the asymmetry: insertionPoint refers to the first arg
#' addVectors(v2, v1, insertionPoint = -4, normalize = FALSE)
#'
#' v3 = rep(100, 15)
#' addVectors(v1, v3, insertionPoint = -4, normalize = FALSE)
#' addVectors(v2, v3, insertionPoint = 7, normalize = FALSE)
addVectors = function(v1, v2, insertionPoint = 1, normalize = TRUE) {
  if (!is.numeric(v1)) stop(paste('Non-numeric v1:', head(v1)))
  if (!is.numeric(v2)) stop(paste('Non-numeric v2:', head(v2)))
  v1[is.na(v1)] = 0
  v2[is.na(v2)] = 0

  # align left ends
  if (insertionPoint > 1) {
    pad_left = insertionPoint - 1
    v2 = c(rep(0, insertionPoint), v2)
  } else if (insertionPoint < 1) {
    pad_left = 1 - insertionPoint
    v1 = c(rep(0, pad_left), v1)
  }

  # equalize lengths
  l1 = length(v1)
  l2 = length(v2)
  len_dif = l2 - l1
  if (len_dif > 0) {
    v1 = c(v1, rep(0, len_dif))
  } else if (len_dif < 0) {
    v2 = c(v2, rep(0, -len_dif))
  }

  # add and normalize
  out = v1 + v2
  if (normalize) out = out / max(abs(out))
  return(out)
}


#' Clump a sequence into large segments
#'
#' Internal soundgen function.
#'
#' \code{clumper} makes sure each homogeneous segment in a sequence is at least
#' minLength long. Called by getIntegerRandomWalk() and getVocalFry(). Algorithm:
#' go through the sequence once. If a short segment is encountered, it is pooled
#' with the previous one (i.e., the currently evaluated segment grows until it
#' is long enough, which may shorten the following segment). Finally, the last
#' segment is checked separately. This is CRUDE - a smart implementation is
#' pending!
#' @keywords internal
#' @param s a vector (soundgen supplies integers, but \code{clumper} also works
#'   on a vector of floats, characters or booleans)
#' @param minLength an integer or vector of integers indicating the desired
#'   length of a segment at each position (can vary with time, e.g., if we are
#'   processing pitch_per_gc values)
#' @return Returns the original sequence s transformed to homogeneous segments
#'   of required length.
#' @keywords internal
#' @examples
#' s = c(1,3,2,2,2,0,0,4,4,1,1,1,1,1,3,3)
#' soundgen:::clumper(s, 2)
#' soundgen:::clumper(s, 3)
#' soundgen:::clumper(s, seq(1, 3, length.out = length(s)))
#' soundgen:::clumper(c('a','a','a','b','b','c','c','c','a','c'), 4)
clumper = function(s, minLength) {
  if (max(minLength) < 2) return(s)
  minLength = round(minLength) # just in case it's not all integers
  if (length(minLength) == 1) {
    if (length(s) < minLength) {
      return(rep(round(median(s)), length(s)))
    }
  } else if (length(unique(s)) < 2 |
             length(s) < minLength[1]) {
    return(rep(round(median(s)), length(s)))
  }
  if (length(minLength)==1 | length(minLength) != length(s)) {
    minLength = rep(minLength, length(s)) # upsample minLength
  }

  c = 0
  for (i in 2:length(s)) {
    if (s[i - 1] == s[i]) {
      c = c + 1
    } else {
      if (c < minLength[i]) {
        s[i] = s[i - 1] # grow the current segment until it is long enough
        c = c + 1
      } else {
        c = 1 # terminate the segment and reset the counter
      }
    }
  }

  # make sure the last epoch is also long enough
  idx_min = max((length(s) - tail(minLength, 1) + 1), 2):length(s)
  # these elements have to be homogeneous
  if (sum(s[idx_min] == tail(s, 1)) < tail(minLength, 1)) {
    # if they are not...
    idx = rev(idx_min)
    c = 1
    i = 2
    while (s[idx[i]] == s[idx[i] - 1] & i < length(idx)) {
      # count the number of repetitions for the last element
      c = c + 1
      i = i + 1
    }
    if (c < tail(minLength, 1)) {
      # if this number is insufficient,...
      s[idx] = s[min(idx_min)] # ...pool the final segment and the previous one
    }
  } # plot (s)
  return(s)
}


#' Simple peak detection
#'
#' Internal soundgen function.
#'
#' @param x input vector
#' @param threshold threshold for peak detection
#' @keywords internal
#' @examples
#' soundgen:::isCentral.localMax(c(1,1,3,2,1), 2.5)
isCentral.localMax = function(x, threshold) {
  middle = ceiling(length(x) / 2)
  return(x[middle] > threshold && which.max(x) == middle)
}


#' Get sigmoid filter
#'
#' Internal soundgen function.
#'
#' Produces a filter for amplitude modulation ranging from clicks to
#' approximately a sine wave to reversed clicks (small episodes of silence). The
#' filter is made from concatenated sigmoids and their mirror reflections.
#' @return Returns a vector of length \code{len} and range from 0 to 1
#' @param len the length of output vector
#' @param samplingRate the sampling rate of the output vector, Hz
#' @param freq the frequency of amplitude modulation, Hz (numeric vector)
#' @param shape 0 = ~sine, -1 = clicks, +1 = notches (NB: vice versa in
#'   soundgen!); numeric vector of length 1 or the same length as \code{freq}
#' @param spikiness amplifies the effect of the "shape" parameter;
#'   numeric vector of length 1 or the same length as \code{freq}
#' @keywords internal
#' @examples
#' for (shape in c(0, -.1, .1, -1, 1)) {
#'   s = soundgen:::getSigmoid(shape = shape, len = 1000, samplingRate = 500, freq = 2)
#'   plot(s, type = 'l', main = paste('shape =', shape), xlab = '', ylab = '')
#' }
getSigmoid = function(len,
                      samplingRate = 16000,
                      freq = 5,
                      shape = 0,
                      spikiness = 1) {
  # print(c(len, freq))
  if (length(freq) > 1 | length(shape) > 1 | length(spikiness) > 1) {
    # get preliminary frequency contour to estimate how many cycles are needed
    if (length(freq) != len) {
      freqContour_prelim = getSmoothContour(
        anchors = freq,
        len = 100,
        valueFloor = 0.001,
        method = 'spline'
      )
    } else {
      freqContour_prelim = freq
    }
    # plot(freqContour_prelim, type = 'l')
    n = ceiling(len / samplingRate / mean(1 / freqContour_prelim))

    # get actual contours
    freqContour = getSmoothContour(anchors = freq, len = n,
                                   valueFloor = 0.001, method = 'spline')
    shapeContour = getSmoothContour(anchors = shape, len = n,
                                    method = 'spline')
    spikinessContour = getSmoothContour(anchors = spikiness,
                                        len = n, method = 'spline')

    # set up par vectors
    from = -exp(-shapeContour * spikinessContour)
    to = exp(shapeContour * spikinessContour)
    slope = exp(abs(shapeContour)) * 5  # close to sine

    # create one cycle at a time
    out = vector()
    i = 1
    while (length(out) < len) {
      a = seq(from = from[i], to = to[i],
              length.out = samplingRate / freqContour[i] / 2)
      b = 1 / (1 + exp(-a * slope[i]))
      b = zeroOne(b)  # plot(b, type = 'l')
      out = c(out, b, rev(b))
      i = ifelse(i + 1 > n, n, i + 1)  # repeat the last value if we run out of cycles
    }
    out = out[1:len]
  } else {
    # if pars are static, we can take a shortcut (~50 times faster)
    from = -exp(-shape * spikiness)
    to = exp(shape * spikiness)
    slope = exp(abs(shape)) * 5  # close to sine
    a = seq(from = from, to = to, length.out = samplingRate / freq / 2)
    b = 1 / (1 + exp(-a * slope))
    b = zeroOne(b)  # plot(b, type = 'l')
    out = rep(c(b, rev(b)), length.out = len)
  }
  # plot(out, type = 'l')
  return(out)
}


#' Report CI
#'
#' Internal soundgen function
#'
#' Takes a numeric vector or matrix with three elements / columns: fit, lower
#' quantile from a CI, and upper quantile from a CI. For each row, it prints the
#' result as fit and CI in square brackets
#' @param n numeric vector or matrix
#' @param digits number of decimal points to preserve
#' @keywords internal
#' @examples
#' n = rnorm(100)
#' soundgen:::reportCI(quantile(n, probs = c(.5, .025, .975)))
#'
#' a = data.frame(fit = c(3, 5, 7),
#'                lwr = c(1, 4, 6.5),
#'                upr = c(5, 6, 7.1))
#' soundgen:::reportCI(a, 1)
#' soundgen:::reportCI(a, 1, ' cm')
#' soundgen:::reportCI(a, 1, '%, 95% CI')
reportCI = function(n, digits = 2, suffix = NULL) {
  if (is.data.frame(n)) n = as.matrix(n)
  n = round(n, digits)
  if (is.matrix(n)) {
    out = matrix(NA, nrow = nrow(n))
    rownames(out) = rownames(n)
    for (i in 1:nrow(n)) {
      out[i, ] = reportCI(n[i, ], digits = digits, suffix = suffix)
    }
    out
  } else {
    paste0(n[1], suffix, ' [', n[2], ', ', n[3], ']')
  }
}


#' Interpolate matrix
#'
#' Internal soundgen function
#'
#' Performs a chosen type of interpolation (linear or smooth) across both rows
#' and columns of a matrix, in effect up- or downsampling a matrix to required
#' dimensions
#' @param m input matrix of numeric values
#' @param nr,nc target dimensions
#' @param interpol interpolation method ('approx' for linear, 'spline' for
#'   spline)
#' @keywords internal
#' @examples
#' m = matrix(1:12 + rnorm(12, 0, .2), nrow = 3)
#' soundgen:::interpolMatrix(m)  # just returns the original
#' soundgen:::interpolMatrix(m, nr = 10, nc = 7)
#' soundgen:::interpolMatrix(m, nr = 10, nc = 7, interpol = 'spline')
#' soundgen:::interpolMatrix(m, nr = 2, nc = 7)
#' soundgen:::interpolMatrix(m, nr = 2, nc = 2)
#'
#' # input matrices can have a single row/column
#' soundgen:::interpolMatrix(matrix(1:5, nrow = 1), nc = 9)
#' soundgen:::interpolMatrix(matrix(1:5, ncol = 1), nr = 5, nc = 3)
interpolMatrix = function(m,
                          nr = NULL,
                          nc = NULL,
                          interpol = c("approx", "spline")[1]) {
  if (!is.matrix(m)) {
    m = as.matrix(m)
    warning('non-matrix input m: converting to matrix')
  }
  if (is.null(nr)) nr = nrow(m)
  if (is.null(nc)) nc = ncol(m)
  if (nr == nrow(m) & nc == ncol(m)) return(m)
  # if (nr < 2) stop('nr must be >1')
  # if (nc < 2) stop('nc must be >1')
  isComplex = is.complex(m[1, 1])

  # Downsample rows if necessary
  if (nrow(m) > nr) {
    m = m[seq(1, nrow(m), length.out = nr),, drop = FALSE]
  }

  # Downsample columns if necessary
  if (ncol(m) > nc) {
    m = m[, seq(1, ncol(m), length.out = nc), drop = FALSE]
  }

  # Interpolate rows if necessary
  if (nrow(m) < nr) {
    if (nrow(m) == 1) {
      temp = matrix(rep(m, nr), nrow = nr, byrow = TRUE)
    } else {
      temp = matrix(1, nrow = nr, ncol = ncol(m))
      for (c in 1:ncol(m)) {
        if (isComplex) {
          # approx doesn't work with complex numbers properly, so we treat the
          # Re and Im parts separately
          temp_re = approx(x = Re(m[, c]), n = nr)$y
          temp_im = approx(x = Im(m[, c]), n = nr)$y
          temp[, c] = complex(real = temp_re, imaginary = temp_im)
        } else {
          temp[, c] = do.call(interpol, list(x = m[, c], n = nr))$y
        }
      }
    }
    if (!is.null(rownames(m))) {
      rnms = as.numeric(rownames(m))
      rownames(temp) = do.call(interpol, list(x = rnms, n = nr))$y
    }
  } else {
    temp = m
    rownames(temp) = rownames(m)
  }

  # Interpolate columns if necessary
  if (ncol(m) < nc) {
    if (ncol(m) == 1) {
      out = matrix(rep(temp[, 1], nc), ncol = nc, byrow = FALSE)
    } else {
      out = matrix(1, nrow = nr, ncol = nc)
      for (r in 1:nr) {
        if (isComplex) {
          temp_re = approx(x = Re(temp[r, ]), n = nc)$y
          temp_im = approx(x = Im(temp[r, ]), n = nc)$y
          out[r, ] = complex(real = temp_re, imaginary = temp_im)
        } else {
          out[r, ] = do.call(interpol, list(x = temp[r, ], n = nc))$y
        }
      }
    }
    if (!is.null(colnames(m))) {
      cnms = as.numeric(colnames(m))
      try_colnames = try(do.call(interpol, list(x = cnms, n = nc))$y,
                         silent = TRUE)
      if (!inherits(try_colnames, 'try-error')) {
        colnames(out) = try_colnames
      }
    }
  } else {
    out = temp
    colnames(out) = colnames(temp)
  }
  rownames(out) = rownames(temp)
  return(out)
}


#' sampleModif
#'
#' Internal soundgen function
#'
#' Same as \code{\link[base]{sample}}, but without defaulting to x = 1:x if
#' length(x) = 1. See
#' https://stackoverflow.com/questions/7547758/using-sample-with-sample-space-size-1
#' @param x vector
#' @param ... other arguments passed to \code{sample}
#' @keywords internal
#' @examples
#' soundgen:::sampleModif(x = 3, n = 1)
#' # never returns 1 or 2: cf. sample(x = 3, n = 1)
sampleModif = function(x, ...) x[sample.int(length(x), ...)]


#' Gaussian smoothing in 2D
#'
#' Takes a matrix of numeric values and smoothes it by convolution with a
#' symmetric Gaussian window function.
#'
#' @seealso \code{\link{modulationSpectrum}}
#'
#' @return Returns a numeric matrix of the same dimensions as input.
#' @param m input matrix (numeric, on any scale, doesn't have to be square)
#' @param kernelSize the size of the Gaussian kernel, in points
#' @param kernelSD the SD of the Gaussian kernel relative to its size (.5 = the
#'   edge is two SD's away)
#' @param plotKernel if TRUE, plots the kernel
#' @export
#' @examples
#' s = spectrogram(soundgen(), samplingRate = 16000,
#'   output = 'original', plot = FALSE)
#' # image(log(s))
#' s1 = gaussianSmooth2D(s, kernelSize = 11, plotKernel = TRUE)
#' # image(log(s1))
gaussianSmooth2D = function(m,
                            kernelSize = 5,
                            kernelSD = .5,
                            plotKernel = FALSE) {
  nr = nrow(m)
  nc = ncol(m)
  if (kernelSize < 2) return(m)
  if (kernelSize >= (nr / 2)) {
    kernelSize = ceiling(nr / 2) - 1
  }
  if (kernelSize >= (nc / 2)) {
    kernelSize = ceiling(nc / 2) - 1
  }
  if (kernelSize %% 2 == 0) kernelSize = kernelSize - 1  # make uneven
  if (kernelSize < 2) return(m)

  # set up 2D Gaussian filter
  kernel = getCheckerboardKernel(
    size = kernelSize,
    kernelSD = kernelSD,
    checker = FALSE,
    plot = plotKernel)
  kernel = kernel / sum(kernel)  # convert to pdf

  ## pad matrix with size / 2 zeros, so that we can correlate it with the
  #  kernel starting from the very edge
  m_padded = matrix(0,
                    nrow = nr + kernelSize,
                    ncol = nc + kernelSize)
  # lower left corner in the padded matrix where we'll paste the original m
  idx = (kernelSize + 1) / 2
  # paste original. Now we have a padded matrix
  m_padded[idx:(idx + nrow(m) - 1), idx:(idx + ncol(m) - 1)] = m

  # kernel smoothing
  out = matrix(NA, nrow = nr, ncol = nc)
  for (i in 1:nr) {
    for (j in 1:nc) {
      out[i, j] = sum(m_padded[i : (i + 2 * idx - 2), j : (j + 2 * idx - 2)] * kernel)
    }
  }
  if (!is.null(rownames(m))) rownames(out) = rownames(m)
  if (!is.null(colnames(m))) colnames(out) = colnames(m)
  return(out)
}


#' Proportion of total
#'
#' Internal soundgen function.
#'
#' Calculates the values in the input distribution that contain particular
#' proportions of the sum of all values in the input distribution.
#' @param x numeric vector of non-negative real numbers
#' @param quantiles quantiles of the cumulative distribution
#' @keywords internal
#' @examples
#' x = rnorm(100)
#' x = x - min(x)  # must be non-negative
#' hist(x)
#' v = soundgen:::pDistr(x, quantiles = c(.5, .8, .9))
#' sum(x[x > v['0.5']]) / sum(x)
#' sum(x[x > v['0.9']]) / sum(x)
pDistr = function(x, quantiles) {
  a1 = rev(sort(x))  # plot(a1, type = 'l')
  a2 = cumsum(a1)  # plot(a2, type = 'l')
  total = sum(x)
  out = rep(NA, length(quantiles))
  names(out) = quantiles
  for (q in 1:length(quantiles)) {
    out[q] = a1[which(a2 > total * quantiles[q])[1]]
  }
  return(out)
}


#' Log-warp matrix
#'
#' Internal soundgen function.
#'
#' Log-warps a matrix, as if log-transforming plot axes.
#'
#' @param m a matrix of numeric values of any dimensions (not necessarily
#'   square)
#' @param base the base of logarithm
#' @keywords internal
#' @examples
#' m = matrix(1:90, nrow = 10)
#' soundgen:::logMatrix(m, base = 2)
#' soundgen:::logMatrix(m, base = 10)
#'
#' soundgen:::logMatrix(m = matrix(1:9, nrow = 1), base = 2)
#'
#' \dontrun{
#' s = spectrogram(soundgen(), 16000, output = 'original')
#' image(log(t(soundgen:::logMatrix(s, base = 2))))
#' }
logMatrix = function(m, base = 2) {
  # the key is to make a sequence of time locations within each row/column for
  # interpolation: (1:nrow(m)) ^ base (followed by normalization, so this index
  # will range from 1 to nrow(m) / ncol(m))
  if (ncol(m) > 1) {
    idx_row = (1:ncol(m)) ^ base - 1
    idx_row = idx_row / max(idx_row)
    idx_row = idx_row * (ncol(m) - 1) + 1
    # interpolate rows at these time points
    m1 = t(apply(m, 1, function(x) approx(x, xout = idx_row)$y))
  } else {
    m1 = m
  }

  # same for columns
  if (nrow(m) > 1) {
    idx_col = (1:nrow(m)) ^ base - 1
    idx_col = idx_col / max(idx_col)
    idx_col = idx_col * (nrow(m) - 1) + 1
    # interpolate columns at these time points
    m2 = apply(m1, 2, function(x) approx(x, xout = idx_col)$y)
  } else {
    m2 = m1
  }

  # interpolate row and column names
  # (assuming numeric values, as when called from modulationSpectrum())
  if (!is.null(colnames(m)) & ncol(m) > 1) {
    colnames(m2) = approx(as.numeric(colnames(m)), xout = idx_row)$y
  }
  if (!is.null(rownames(m)) & nrow(m) > 1) {
    rownames(m2) = approx(as.numeric(rownames(m)), xout = idx_col)$y
  }

  return(m2)
}

#' Switch color theme
#'
#' Internal soundgen function
#' @param colorTheme string like 'bw', 'seewave', or function name
#' @keywords internal
switchColorTheme = function(colorTheme) {
  if (is.null(colorTheme)) return(NULL)
  if (colorTheme == 'bw') {
    color.palette = function(x) gray(seq(from = 1, to = 0, length = x))
  } else if (colorTheme == 'seewave') {
    color.palette = seewave::spectro.colors
  } else {
    colFun = match.fun(colorTheme)
    color.palette = function(x) rev(colFun(x))
  }
  return(color.palette)
}

#' Parabolic peak interpolation
#'
#' Internal soundgen function
#'
#' Takes a spectral peak and two adjacent points, fits a parabola through them,
#' and thus estimates true peak location relative to the discrete peak. See
#' https://ccrma.stanford.edu/~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html
#' @param points the amplitudes of three adjacent points (beta is the
#'   peak), ideally spectrum on a dB scale, obtained with a Gaussian window
#' @param plot if TRUE, plot the points and the fit parabola
#' @return Returns a list: $p = the correction coefficient in bins (idx_beta + p
#'   gives the true peak), $ampl_p = the amplitude of the true peak
#' @keywords internal
#' @examples
#' soundgen:::parabPeakInterpol(c(-1, 0, -4), plot = TRUE)
parabPeakInterpol = function(threePoints, plot = FALSE) {
  if (any(is.na(threePoints)) | length(threePoints) < 3) {
    stop(paste('invalid input:', threePoints))
  }
  if (threePoints[2] < threePoints[1] |
      threePoints[2] < threePoints[3]) {
    # the central point is not a peak
    return(list(p = 0, ampl_p = 0))
  }
  alpha = threePoints[1]
  beta = threePoints[2]
  gamma = threePoints[3]
  a = (alpha - 2 * beta + gamma) / 2
  p = (alpha - gamma) / 4 / a
  ampl_p = beta - (alpha - gamma) * p / 4
  if (plot) {
    b = beta - a * p ^ 2
    x = seq(-2, 2, length.out = 100)
    parab = a * (x - p) ^ 2 + b
    plot(-1:1, c(alpha, beta, gamma), type = 'p',
         xlim = c(-2, 2), ylim = c(gamma, ampl_p),
         xlab = 'Bin', ylab = 'Ampl')
    points(x, parab, type = 'l', col = 'blue')
  }
  return(list(p = p, ampl_p = ampl_p))
}

#' Identify and play
#'
#' Internal soundgen function
#'
#' A wrapper around \code{identify()} intended to play the sound corresponding
#' to a clicked point.
#' @param x,y plot coordinates
#' @param data dataframe from which x & y are taken, also containing a column
#'   called "file"
#' @param audioFolder path to audio files
#' @param to play only the first ... s
#' @param plot if TRUE, plots the index of clicked points
#' @param pch symbol for marking clicked points
#' @param ... other arguments passed to \code{identify()}
#' @keywords internal
#' @examples
#' \dontrun{
#' msf = modulationSpectrum('~/Downloads/temp', plot = FALSE)
#'
#' # Method 1: provide path to folder, leave data = NULL
#' plot(msf$summary$amFreq_median, msf$summary$amDep_median)
#' identifyPch(msf$summary$amFreq_median, msf$summary$amDep_median,
#'   audioFolder = '~/Downloads/temp',
#'   to = 2,
#'  plot = TRUE,
#'  pch = 19)
#'
#' # Method 2:
#' plot(msf$summary$amFreq_median, msf$summary$amDep_median)
#' x = msf$summary$amFreq_median
#' y = msf$summary$amDep_median
#' identifyPch(x, y, data = msf$summary,
#'   audioFolder = '~/Downloads/temp',
#'   to = 2,
#'   plot = FALSE,
#'   pch = 8)
#' }
identifyAndPlay = function(
  x,
  y = NULL,
  data = NULL,
  audioFolder,
  to = 5,
  plot = FALSE,
  pch = 19,
  ...) {
  n = length(x)
  if (is.null(data)) {
    data = data.frame(
      file = list.files(audioFolder, full.names = TRUE)
    )
  } else {
    data = data.frame(
      file = paste0(audioFolder, '/', data$file)
    )
  }
  xy = xy.coords(x, y)
  x = xy$x
  y = xy$y
  sel = rep(FALSE, n)
  answers = numeric(0)
  while(sum(sel) < n) {
    ans = identify(x[!sel], y[!sel], labels = which(!sel),
                   n = 1, plot = plot, ...)
    if(!length(ans)) break
    ans = which(!sel)[ans]
    answers = c(answers, ans)
    points(x[ans], y[ans], pch = pch)
    ## play the selected point
    try(playme(data$file[ans], to = to))
  }
  ## return indices of selected points
  return(data$file[answers])
}


#' Warp matrix
#'
#' Internal soundgen function
#'
#' Warps or scales each column of a matrix (normally a spectrogram).
#' @keywords internal
#' @param m matrix (rows = frequency bins, columns = time)
#' @param scaleFactor 1 = no change, >1 = raise formants
#' @param interpol interpolation method
#' @examples
#' a = matrix(1:12, nrow = 4)
#' a
#' soundgen:::warpMatrix(a, 1.5, 'approx')
#' soundgen:::warpMatrix(a, 1/1.5, 'spline')
warpMatrix = function(m, scaleFactor, interpol = c('approx', 'spline')[1]) {
  scaleFactor = getSmoothContour(scaleFactor, len = ncol(m))
  n1 = nrow(m)
  m_warped = m
  for (i in 1:ncol(m)) {
    if (scaleFactor[i] > 1) {
      # "stretch" the vector (eg spectrum of a frame)
      n2 = round(n1 / scaleFactor[i])
      m_warped[, i] = do.call(interpol, list(x = m[1:n2, i], n = n1))$y
    } else if (scaleFactor[i] < 1) {
      # "shrink" the vector and pad it with the last obs to the original length
      n2 = round(n1 * scaleFactor[i])
      padding = rep(m[n1, i], n1 - n2)  # or 0
      m_warped[, i] = c(
        do.call(interpol, list(x = m_warped[, i],
                               xout = seq(1, n1, length.out = n2),
                               n = n1))$y,
        padding
      )
    }
    # plot(m_warped[, i], type = 'l')
    # plot(abs(m[, i]), type = 'l', xlim = c(1, max(n1, n2)))
    # points(m_warped[, i], type = 'l', col = 'blue')
  }
  return(m_warped)
}


#' Principal argument
#'
#' Internal soundgen function.
#'
#' Recalculates the phase of complex numbers to be within the interval from -pi to pi.
#' @param x real number representing phase angle
#' @keywords internal
princarg = function(x) (x + pi) %% (2 * pi) - pi


#' Split vector into chunks
#'
#' Internal soundgen function.
#'
#' Takes a numeric vector x and splits it into n chunks. This is the fastest
#' splitting algorithm from
#' https://stackoverflow.com/questions/3318333/split-a-vector-into-chunks
#' @param x numeric vector to split
#' @param n number of chunks
#' @return Returns a list of length \code{n} containing the chunks
#' @keywords internal
#' @examples
#' # prepare chunks of iterator to run in parallel on several cores
#' chunks = soundgen:::splitIntoChunks(1:21, 4)
#' chunks
splitIntoChunks = function(x, n) {
  len = length(x)
  len_chunk = ceiling(len / n)
  mapply(function(a, b) (x[a:b]),
         seq.int(from = 1, to = len, by = len_chunk),
         pmin(seq.int(from = 1, to = len, by = len_chunk) + (len_chunk - 1), len),
         SIMPLIFY = FALSE)
}


#' rbind_fill
#'
#' Internal soundgen function
#'
#' Fills missing columns with NAs, then rbinds - handy in case one has extra
#' columns. Used in formant_app(), pitch_app()
#' @param df1,df2 two dataframes with partly matching columns
#' @keywords internal
rbind_fill = function(df1, df2) {
  if (!is.list(df1) || nrow(df1) == 0) return(df2)
  if (!is.list(df2) || nrow(df2) == 0) return(df1)
  df1[setdiff(names(df2), names(df1))] = NA
  df2[setdiff(names(df1), names(df2))] = NA
  return(rbind(df1, df2))
}

Try the soundgen package in your browser

Any scripts or data that you put into this service are public.

soundgen documentation built on Aug. 14, 2022, 5:05 p.m.