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Abstract

The R package spate provides tools for modeling of large space-time
data sets. A spatio-temporal Gaussian process is defined through a stochas-
tic partial differential equation (SPDE) which is solved using spectral
methods. In contrast to the traditional Geostatistical way of relying on
the covariance function, the spectral SPDE approach is computationally
tractable and provides a realistic space-time parametrization.

This package aims at providing tools for two different modeling ap-
proaches. First, the SPDE based spatio-temporal model can be used as
a component in a customized hierarchical Bayesian model (HBM) or gen-
erlized linear mixed model (GLMM). The functions of the package then
provide parametrizations of the process part of the model as well as com-
putationally efficient algorithms needed for doing inference with the hierar-
chical model. Alternatively, the adaptive MCMC algorithm implemented
in the package can be used as an algorithm for doing inference without
any additional modeling. The MCMC algorithm supports data that fol-
low a Gaussian or a censored distribution with point mass at zero. Spatio-
temporal covariates can be included in the model through a regression
term.
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1 Introduction

Increasingly larger spatio-temporal data arise in many fields and applications.
For instance, data sets are obtained from remote sensing satellites or deter-
ministic physical models such as numerical weather prediction (NWP) models.
Hence, there is a growing need for methodology that can cope with such large
data. See Cressie and Wikle (2011) for an introduction and an overview of
spatio-temporal statistics.

Gaussian processes are often used for modeling data in space and time. A
Gaussian process is defined by specifying a mean and a covariance function.
However, directly working with a spatio-temporal covariance function is com-
putationally infeasible if data sets are large. This is due to the fact that for
doing inference, frequentist or Bayesian, covariance matrices need to be factor-
ized which is computationally expensive. Alternatively, a Gaussian process can
be specified through a stochastic partial differential equation (SPDE), which
implicitly also gives a covariance function. The advection-diffusion SPDE is an
elementary model in the spatio-temporal setting. When solving this SPDE in
the spectral space, and discretizing in time and space, a linear Gaussian state
space model is obtained which is computationally advantageous (see Sigrist et al.
(2012)). Roughly speaking, the computational speed-up is due to the tempo-
ral Markov property and the fact that Fourier functions are eigenfunctions of
the differential operator, from which follows that in the spectral space most of
the relevant matrices are diagonal. This package implements the methodology
presented in Sigrist et al. (2012).

The package spate has the following functionality. On the one hand, it
provides tools for constructing customized models such as generalized linear
mixed models (GLMM) or hierarchical Bayesian models (HBM) (Wikle et al.,
1998) using a spatio-temporal Gaussian process at some stage, for instance, in
the linear predictor. These tools include functions for obtaining spectral prop-
agator and covariance matrices of the linear Gaussian state space model, fast
calculation of the two-dimensional real Fourier transform, reduced dimensional
approximations, fast evaluation of the log-likelihood, and fast simulation from
the full conditional of the Fourier coefficients using a spectral variant of the
Forward Filtering Backward Sampling algorithm. On the other hand, the pack-
age also provides a function for Bayesian inference using a Monte Carlo Markov
chain (MCMC) algorithm that is designed such that it needs as little fine tuning
as possible. The MCMC algorithm can model data being normally distributed
or censored data with point mass at zero following a skewed Tobit distribution.
There is also a function for making probabilistic predictions. A user interested
in modeling data not following one of the above two types of data distributions
can modify the MCMC algorithm to allow for different distributions. Finally,
functions for plotting and simulation of space-time processes are also provided.

1.1 Notation

Since some readers might skip the next section, we start by establishing the
principal notation. The Gaussian process modeling structured variation in space
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and time is denoted by ξ(ti, sl), i = 1, . . . , T , l = 1, . . . , N . In vectorized
form, we write ξ(ti) = (ξ(ti, s1), . . . , ξ(ti, sN ))′ (where stacking is done first
over the x-axis and then over the y-axis), and ξ = (ξ(t1)

′, . . . , ξ(tT )
′)′. For

each ti, ξ(ti) = Φα(ti) is the Fourier transform of the Fourier coefficients α(ti),
α = (α(t1)

′, . . . ,α(tT )
′)′. The observed Gaussian process w(ti, sl) equals the

latent ξ(ti, sl) plus a measurement error. w(ti) and w are defined analogously. If
the observations are censored, i.e., if they follow a skewed Tobit distribution, the
observed data is denoted by y(ti, sl). Finally, θ = (ρ0, σ

2, ζ, ρ1, γ, α, µx, µy, τ
2)′

denotes the vector of hyper-parameters.
We assume that we model the process on a regular, rectangular grid of

n× n = N spatial locations s1, . . . , sN in [0, 1]2 and at equidistant time points
t1, . . . , tT with ti − ti−1 = ∆. These two assumptions can be easily relaxed,
i.e., one can have irregular spatial locations and non-equidistant time points.
The former can be achieved by adopting a data augmentation approach (im-
plemented in spate.mcmc) or by using an incidence matrix (also implemented
in spate.mcmc, see below) depending on the dimensionality of the observation
process. The latter can be done by taking a time varying ∆i.

2 Summary of modeling background

In the following, we briefly recall the underlying model and methodology. For
more details we refer to Sigrist et al. (2012).

2.1 Space-time Gaussian process defined through an SPDE

A spatio-temporal Gaussian process ξ(t, s) is defined as the solution of the
stochastic advection-diffusion equation

∂

∂t
ξ(t, s) = −µ · ∇ξ(t, s) +∇ ·Σ∇ξ(t, s)− ζξ(t, s) + ϵ(t, s), (1)

where t ≥ 0, s ∈ [0, 1]2 wrapped on a torus, ∇ =
(

∂
∂x ,

∂
∂y

)′
is the gradient

operator, and ∇ · F = ∂Fx

∂x + ∂F y

∂y is the divergence operator for F = (F x, F y)′

being a vector field, µ = (µx, µy)
′,

Σ−1 =
1

ρ21

(
cosα sinα

−γ · sinα γ · cosα

)T (
cosα sinα

−γ · sinα γ · cosα

)
,

and where ϵ(t, s) is a Gaussian random field that is white in time and has a
spatial Matérn covariance function with spectral density

f̂(k) =
σ2

(2π)2

(
kk +

1

ρ20

)−(ν+1)

.

For the parameters, we have the following restrictions

ρ0, σ, ρ1, γ, ζ ≥ 0, µx, µy ∈ [−0.5, 0.5], α ∈ [0, π/2].
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The parameters are interpreted as follows. The first term µ · ∇ξ(t, s) models
transport effects (called advection in weather applications), µ being a drift or
velocity vector. The second term, ∇ · Σ∇ξ(t, s), is a diffusion term that can
incorporate anisotropy. ρ1 acts as a range parameter and controls the amount
of diffusion. The parameters γ and α control the amount and the direction of
anisotropy. With γ = 1, isotropic diffusion is obtained. Removing a certain
amount of ξ(t, s) at each time, −ζξ(t, s) accounts for damping and regulates
the amount of temporal correlation. Finally, ϵ(t, s) is a source-sink or stochastic
forcing term that can be interpreted as describing, amongst others, convective
phenomena in precipitation modeling applications. ρ0 is a range parameter and
σ2 determines the marginal variance. Since in many applications the smooth-
ness parameter ν is not estimable from data, we take ν = 1 by default, which
corresponds to the Whittle covariance function.

2.2 Spectral solution

As is shown in Sigrist et al. (2012), inference can be done computationally effi-
ciently when solving the SPDE in the spectral space. The latter means, roughly
speaking, that the solution is represented a linear combination of deterministic,
real Fourier basis functions

ϕ
(c)
j (s) = cos(k′

js), ϕ
(s)
j (s) = sin(k′

js),

with random coefficients αc
j(t), α

s
j(t) that evolve dynamically over time accord-

ing to a vector autoregression. Fourier functions have several advantages for
solving the SPDE (1). Amongst others, Fourier functions are eigenfunctions
of the spatial differential operator: differentiation in the physical space corre-
sponds to multiplication in the spectral space. Furthermore, one can use the
FFT for efficiently transforming from the physical to the spectral space, and
vice versa.

As is customary for spatial and spatio-temporal models, we add an non-
structured Gaussian term ν(t, s) ∼ N(0, τ2) that is white in time and space
to ξ(t, s). This term accounts for small scale variation and / or measurement
errors (nugget effect). Solving the SPDE in the spectral space and discretizing
in time and space, we obtain the following linear Gaussian state space model:

w(ti+1) = ξ(ti+1) + ν(ti+1),ν(ti+1) ∼ N(0, τ21), (2)
ξ(ti+1) = Φα(ti+1), (3)

α(ti+1) = Gα(ti) + ϵ̂(ti+1), ϵ̂(ti+1) ∼ N(0, Q̂). (4)

The observation equation (2) specifies how the observation field w(ti+1) =
(w(ti, s1), . . . , w(ti, sN ))′ at time ti+1 is related to the spatio-temporal process
ξ(ti+1). See below on how to handle non-Gaussian data. In the second equation
(3), the matrix Φ,

Φ =
[
ϕ(s1), . . . ,ϕ(sN )

]′
ϕ(sl) =

(
ϕ
(c)
1 (sl), . . . , ϕ

(c)
4 (sl), ϕ

(c)
5 (sl), ϕ

(s)
5 (sl), . . . , ϕ

(c)
(K−4)/2(sl), ϕ

(s)
(K−4)/2(sl)

)′
,
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applies the discrete, real Fourier transformation to the coefficients

α(t) =
(
α
(c)
1 (t), . . . , α

(c)
4 (t), α

(c)
5 (t), α

(s)
5 (t), . . . , α

(c)
(K−4)/2(t), α

(s)
(K−4)/2(t)

)′
.

Note that the first four terms are cosine terms and, afterwards, there are cosine
- sine pairs. This is a peculiarity of the real Fourier transform. It is due to the
fact that for four wavenumbers kj , the sine terms equal zero on the grid (see
Figure 1). We use the real Fourier transform, instead of the complex one, in
order to avoid complex numbers in the propagator matrix G and since data is
usually real. Note that due to the use of Fourier functions, we assume spatial
stationarity for both the solution ξ and the innovation term ϵ.

The third equation (4) specifies how the random Fourier coefficients evolve
dynamically over time. The propagator matrix G is a block diagonal matrix
with 2× 2 blocks, and the innovation covariance matrix Q̂ is a diagonal matrix.
These two matrices are defined as follows:

G = e∆H ,

[H]1:4,1:4 = diag
(
−k′

jΣkj − ζ
)
,

[H]5:K,5:K = diag
(
−k′

jΣkj − ζ −µkj

µkj −k′
jΣkj − ζ

)
,

(5)

and

Q̂ = diag

(
f̂(kj)

1− e−2∆(k′
jΣkj+ζ)

2(k′
jΣkj + ζ)

)
. (6)

Figure 4 shows an example of a propagator matrix G.
The above result is given in vector format. For the sake of understanding,

we can also write that the solution is of the form

ξ(t, sl) =
4∑

l=1

α
(c)
j (t)ϕ

(c)
j (sl)

+

K/2+2∑
l=5

α
(c)
j (t)ϕ

(c)
j (sl) + α

(s)
j (t)ϕ

(s)
j (sl)

=ϕ(sl)
′α(t),

(7)

where K denotes the number of Fourier terms, i.e., K = N . K however does not
necessary need to equal N , see below for a discussion on dimension reduction.

The spatial wavenumbers kj used in the real Fourier transform lie on the n×n
grid Dn = {2π · (i, j) : −(n/2 + 1) ≤ i, j ≤ n/2} ⊂ 2π · Z2 with n2 = N . Figure
1 illustrates the spatial wavenumbers on a 20 × 20 grid. The red crosses mark
the first four spatial wavenumbers having only a cosine term. The remaining
dots with a circle around represent the wavenumbers used by the cosine - sine
pairs in the real Fourier transform.

To get an idea how the basis functions cos (k′
js) and sin (k′

js) look like, we
plot in Figure 2 twelve low-frequency basis functions corresponding to the six
spatial frequencies closest to the origin 0 (see Figure 1).
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Figure 1: Illustration of wavenumbers used in the two-dimensional discrete real
Fourier transform with n2 = 400 grid points.
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Figure 2: Illustration of two dimensional Fourier basis functions used in the
discrete real Fourier transform. On the x- and y-axis are the coordinates of
s = (sx, sy)

′.

2.3 Non-Gaussian data, covariates, and missing data

Spatio-temporal covariates xp(ti, sl), p = 1, . . . , P can easily be included in the
model by adding a regression term to the equation (2):

w(ti, sl) =
P∑

p=1

βp · xp(ti, sl) + ξ(ti+1, sl) + ν(ti+1, sl). (8)

Non-Gaussian data can be modeled, for instance, in the framework of gen-
eralized linear mixed models (GLMM) or hierarchical Bayesian models. This
means that one assumes that the data follow a non-Gaussian distribution F con-
ditionally on w(ti, sl) or conditionally on the linear predictor

∑P
p=1 βp · xp(ti, sl)+
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ξ(ti+1, sl). Note that fitting such models is a non-trivial task and subject to
ongoing research.

Another approach, which avoids adding an additional stochastic level, is
to assume that the data is a transformed version of w(ti, sl). For instance, if
the observations follow a skewed Tobit model, then the we have the following
observation relation

y(ti, sl) = max(0, w(ti, sl))
λ, (9)

where now y(ti, sl) denotes the observed values and w(ti, sl) is a latent Gaussian
field. This data model is implemented in the package spate. Such a model is
often used for modeling precipitation.

Furthermore, missing values, and the censored ones in (9), can be easily
dealt with using a data augmentation approach. See, e.g., Sigrist et al. (2012)
for more details. In particular, if the observations do not lie on a regular spatial
grid, the grid cells where no observations are made can be assumed to have
missing data.

2.4 Computationally efficient frequentist and Bayesian infer-
ence

When doing inference, for both data models, the Gaussian one in (2) and the
transformed Tobit model (9), the main difficulty consists in evaluating the like-
lihood ℓ(θ) = P [θ|w], θ = (ρ0, σ

2, ζ, ρ1, γ, α, µx, µy, τ
2)′, and in simulating from

the full conditional of the coefficients [α|w,θ], where w and α denote the full
space-time fields. As shown in Sigrist et al. (2012), this can be done in O(TN)
time in the spectral space using the Kalman filter and a backward sampling
step. The fast Fourier transform (FFT) can be used to transform between the
physical and the spectral space. Since there are T fields of dimension N (= n2),
the costs for this are O(TN logN).

2.5 Dimension reduction

The total computational costs can be additionally alleviated by using a reduced
dimensional Fourier basis with K << N basis functions. This means that
one includes only certain frequencies, e.g., low ones. The spectral filtering and
sampling algorithms then require O(KT ) operations. For using the FFT, the
frequencies being excluded are just set to zero.

Alternatively, when the observation process is irregular and low-dimensional
in space, one can include an incidence matrix I that relates the process on the
grid to the observation locations. Instead of (2), the observation equation is
then

w(ti+1) = IΦα(ti+1) + ν(ti+1), ν(ti+1) ∼ N(0, τ21K). (10)

The FFT cannot be used anymore, and the total computational costs are O(K3T )
due to the traditional FFBS.
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3 Parametrization of the dynamic space-time model

3.1 Innovation spectrum Q̂ and Matérn spectrum

The function innov.spec returns the spectrum Q̂ of the integrated stochastic
innovation field ϵ̂(ti+1) as specified in (6). Similarly, the function matern.spec
returns the spectrum of the Matérn covariance function. Note that the Matérn
spectrum is renormalized, by dividing with the sum over all frequencies so that
they sum to one. This guarantees that the parameter σ2 is the marginal variance
no matter how many wavenumbers are included, in case dimension reduction is
done and some frequencies are set to zero.

The code below illustrates how these functions are used. First a vector of
independent Gaussian random variables with variances according to the desired
spectrum is simulated. For instance, ϵ̂ ∼ N(0, Q̂). In the example, this is done
for the Whittle and the integrated innovation spectrum specified in (6). Then
its Fourier transform Φϵ̂ is calculated to obtain a sample from the spatial field
with corresponding spectrum. See two sections below for more details on how to
calculate the Fourier transform. Figure 3 shows sample fields from the Whittle
process and from the stochastic innovation process.

> n <- 100
> set.seed(1)
> ## Simulate Matern field
> matern.spec <- matern.spec(wave=spate.init(n=n,T=1)[["wave"]],
+ n=n,rho0=0.05,sigma2=1,norm=TRUE)
> matern.sim <- real.fft(sqrt(matern.spec)*rnorm(n*n),n=n,inv=FALSE)
> ## Simulate stochstic innovation field epsilon
> innov.spec <- innov.spec(wave=spate.init(n=n,T=1)[["wave"]],
+ n=n, rho0=0.05, sigma2=1, zeta=0.5,
+ rho1=0.05, alpha=pi/4, gamma=2,norm=TRUE)
> innov.sim <- real.fft(sqrt(innov.spec)*rnorm(n*n),n=n,inv=FALSE)

3.2 Propagator matrix G

The function get.propagator returns the spectral propagator matrix G as de-
fined in (5). Figure 4 shows an example of a propagator matrix G. The code
before the figure illustrates how get.propagator is used.

> n <- 4
> wave <- wave.numbers(n)
> G <- get.propagator(wave=wave[["wave"]], indCos=wave[["indCos"]], zeta=0.5,
+ rho1=0.1,gamma=2, alpha=pi/4, muX=0.2, muY=-0.15)

Alternatively, the function propagate.spectral propagates a state α(t)
to obtain Gα(t) in a computationally efficient way using the block-diagonal
structure of G. Note that this is a wrapper function of a C function. In
general, it is preferable to use propagate.spectral instead of calculating a
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Figure 3: Samples from Gaussian processes with Whittle covariance function
and the covariance function of the integrated stochastic innovation field ϵ̂(ti+1).

Propagator matrix G
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Figure 4: Illustration of propagator matrix G.

matrix multiplication with G. The function propagate.spectral has as argu-
ment the propagator matrix G in vectorized from as obtained from the function
get.propagator.vec. Figure 5 and the corresponding code illustrates the use
of these two functions. First, we define an initial state α(t), which is a sample
from the process with the Whittle covariance function in this example. Then
α(t) is propagated forward to obtain Gα(t). The code shows that actually
calculating Gα(t) and applying propagate.spectral are equivalent.
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> n <- 50
> wave <- wave.numbers(n)
> spec <- matern.spec(wave=wave[["wave"]],n=n,
+ rho0=0.05,sigma2=1,norm=TRUE)
> ## Initial state
> alphat <- sqrt(spec)*rnorm(n*n)
> ## Propagate state
> G <- get.propagator(wave=wave[["wave"]],indCos=wave[["indCos"]],zeta=0.1,
+ rho1=0.02, gamma=2,alpha=pi/4,muX=0.2,muY=0.2,dt=1,ns=4)
> alphat1a <- as.vector(G%*%alphat)
> Gvec <- get.propagator.vec(wave=wave[["wave"]],indCos=wave[["indCos"]],zeta=0.1,
+ rho1=0.02, gamma=2,alpha=pi/4,muX=0.2,muY=0.2,dt=1,ns=4)
> alphat1b <- propagate.spectral(alphat,n=n,Gvec=Gvec)
> ## Both methods do the same thing:
> sum(abs(alphat1a-alphat1b))

[1] 6.989338e-15
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Figure 5: Illustration of spectral propagation: initial and propagated field.

3.3 Two-dimensional real Fourier transform

The function real.fft calculates the fast two-dimensional real Fourier trans-
form. This is a wrapper function of a C function which uses the complex FFT
function from the fftw3 library. Furthermore, the function real.fft.TS cal-
culates the two-dimensional real Fourier transform of a space-time field for all
time points at once. To be more specific, for each time point, the corresponding
spatial field is transformed. In contrast to using T times the function real.FFT,
R needs to communicate with C only once which saves considerable computa-
tional time, depending on the data size. For an example of the use of real.fft,
see two sections above.
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The function wave.number returns the wavenumbers used in the real Fourier
transform. In contrast to the complex Fourier transform, which uses n2 different
wavenumbers kj on a square grid, the real Fourier transform uses n2/2 + 2
different wavenumbers. As mentioned earlier, four of them have only a cosine
term, and the remaining n2/2 − 2 wavenumbers each have a sine and cosine
term. For technical details on the real Fourier transform, we refer to Dudgeon
and Mersereau (1984), Borgman et al. (1984), Royle and Wikle (2005), and
Paciorek (2007).

The function get.real.dft.mat returns the matrix Φ (see (3)) which ap-
plies the two-dimensional real Fourier transform. Note that, in general, it is a lot
faster to use real.fft rather than actually multiplying with Φ. The following
code shows how Φ can be constructed using get.real.dft.mat.

> n <- 20
> wave <- wave.numbers(n=n)
> Phi <- get.real.dft.mat(wave=wave[["wave"]],indCos=wave[["indCos"]],n=n)

As another example of the use of the two-dimensional real Fourier transform,
the following code shows how an image can be reconstructed with varying res-
olution. In the code, we first define a two-dimensional image on a 50× 50 grid.
We then construct three different Φis using the function get.real.dft.mat.
Dimension reduction is done using the function spate.init. The argument NF
specifies the number of Fourier functions. Since the image is defined on a 50×50
grid, the total number of Fourier terms is 2500. As can be seen in the code, we
construct reduced dimensional Φis with NF=45 and NF=101. Reduced dimen-
sional reconstructions of the image Ψ are the obtained by calculating ΦiΦ

′
iΨ.

Figure 6 shows the results.

> ## Example: reduced dimensional image reconstruction
> n <- 50
> ## Define image
> image <- rep(0,n*n)
> for(i in 1:n){
+ for(j in 1:n){
+ image[(i-1)*n+j] <- cos(5*(i-n/2)/n*pi)*sin(5*(j)/n*pi)*
+ (1-abs(i/n-1/2)-abs(j/n-1/2))
+ }
+ }
> ## Low-dimensional: only 45 (of potentially 2500) Fourier functions
> spateObj <- spate.init(n=n,T=17,NF=45)
> Phi.LD <- get.real.dft.mat(wave=spateObj$wave, indCos=spateObj$indCos,
+ ns=spateObj$ns, n=n)
> ## Mid-dimensional: 545 (of potentially 2500) Fourier functions
> spateObj <- spate.init(n=n,T=17,NF=101)
> Phi.MD <- get.real.dft.mat(wave=spateObj$wave, indCos=spateObj$indCos,
+ ns=spateObj$ns, n=n)
> ## High-dimensional: all 2500 Fourier functions
> spateObj <- spate.init(n=n,T=17,NF=2500)

12



> Phi.HD <- get.real.dft.mat(wave=spateObj$wave, indCos=spateObj$indCos,
+ ns=spateObj$ns, n=n)
> ## Aply inverse Fourier transform, dimension reduction,
> ## and then Fourier transform
> image.LD <- Phi.LD %*% (t(Phi.LD) %*% image)
> image.MD <- Phi.MD %*% (t(Phi.MD) %*% image)
> image.HD <- Phi.HD %*% (t(Phi.HD) %*% image)
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Figure 6: Example of use of Fourier transform: reduced dimensional image
reconstruction

4 Simulation and plotting

The function spate.sim allows for simulating from the SPDE based spatio-
temporal Gaussian process model defined through (3) and (4). The function
returns a "spateSim" object containing the sample ξ, the coefficients α, as well
as the observed w obtained by adding a nugget effect to ξ. The argument par is a

13



vector of parameters θ in the following order θ = (ρ0, σ
2, ζ, ρ1, γ, α, µx, µy, τ

2)′.
An initial state, or starting value, ξ(t1) for the dynamic model can be given
through the argument StartVal. The starting field needs to be a stacked vec-
tor of lengths n2 (number of spatial points). Use as.vector() to convert a
spatial matrix to a vector. "spateSim" objects can be plotted with the function
plot.spateSim. The code below illustrates the use of these functions. Note
that indScale=TRUE specifies that each field has its individual scale on the z-
axis rather than having one common scale for all six images. Figure 7 shows
one example of a simulated space-time process.

> StartVal <- rep(0,100^2)
> StartVal[75*100+75] <- 1000
> par <- c(rho0=0.05,sigma2=0.7^2,zeta=-log(0.99),rho1=0.06,
+ gamma=3,alpha=pi/4,muX=-0.1,muY=-0.1,tau2=0.00001)
> spateSim <- spate.sim(par=par,n=100,T=5,StartVal=StartVal,seed=1)
> plot(spateSim,mfrow=c(1,5),mar=c(2,2,2,2),indScale=TRUE,
+ cex.axis=1.5,cex.main=2)
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Figure 7: Simulated spatio-temporal Gaussian process as defined in (3) and (4)

5 Inference: log-likelihood evaluation and sampling
from the full conditional

The function ffbs.spectral implements the computationally efficient Kalman
filter and backward sampling algorithms in the spectral space for the model spec-
ified in (2), (3), and (4). The logical arguments lglk or BwSp control whether
evaluation of the log-likelihood, sampling from the full conditional of the coeffi-
cients α, or both are done. This is a wrapper function and the actual calculation
is done in C. Note that either the actual observed data w can be given or the
Fourier transform ŵ (wFT). The latter is useful if, for instance, the log-likelihood
needs to be evaluated several times given the same w. The Fourier transform is
then calculated only once, instead of each time the function is called. loglike
and sample.four.coef are wrapper functions that call ffbs.spectral.

5.1 Example of use of sample.four.coef

The following code illustrates the use of the function sample.four.coef. First,
we simulate data w, and then we sample from the full conditional of the co-
efficients [α|·] to obtain samples from the posterior of the latent process. For
simplicity, the parameters θ are fixed at their true values. In Figure 8, the
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results are shown. In the top plot, the simulated data is displayed and in the
bottom plots the mean of full conditional of the process ξ = Φα. The latter is
obtained by drawing 50 samples from the full conditional [α|·], calculating their
mean, and applying the Fourier transform.

> ## Example of use of 'sample.four.coef'
> ## Simulate data
> n <- 50
> T <- 4
> par <- c(rho0=0.1,sigma2=0.2,zeta=0.5,rho1=0.1,
+ gamma=2,alpha=pi/4,muX=0.2,muY=-0.2,tau2=0.01)
> spateSim <- spate.sim(par=par,n=n,T=T,seed=4)
> w <- spateSim$w
> ## Sample from full conditional
> Nmc <- 50
> alphaS <- array(0,c(T,n*n,Nmc))
> wFT <- real.fft.TS(w,n=n,T=T)
> for(i in 1:Nmc){
+ alphaS[,,i] <- sample.four.coef(wFT=wFT,par=par,n=n,T=T,NF=n*n)
+ }
> ## Mean from full conditional
> alphaMean <- apply(alphaS,c(1,2),mean)
> xiMean <- real.fft.TS(alphaMean,n=n,T=T,inv=FALSE)

w(1) w(2) w(3) w(4)

xiPost(1) xiPost(2) xiPost(3) xiPost(4)

Figure 8: Sampling from the full conditional of the coefficients: comparison of
observed data (top plots) and mean of full conditional of ξ (bottom plots).

5.2 Example of use of loglike

The following code provides an example of the use of loglike. We use the
same simulated data as in the previous example and evaluate the log-likelihood
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at the true parameter values. The code also demonstrates that the function
loglike does the same thing whether one uses the original data w or their
Fourier transform ŵ =wFT. For an example on how to do maximum likelihood
estimation, see the next section.

> ## Evaluation of log-likelihood
> loglike(par=par,w=w,n=n,T=T)

[1] 7861.001

> ## Equivalently, one can use the Fourier transformed data 'wFT'
> loglike(par=par,wFT=wFT,n=n,T=T)

[1] 7861.001

5.3 Maximum likelihood estimation

With the function loglike, one can do maximum likelihood estimation. The
following code shows an example of how this can be done using a general purpose
optimizer, e.g., implemented in the R function optim. First, simulated data is
generated. Then optim is used to minimize the negative log-likelihood. In the
code when calling loglike, we set negative=TRUE as an argument for loglike
so that it returns the negative log-likelihood. Further, with logScale=TRUE we
specify that certain parameters are on the logarithmic scale to ensure positivity
constraints. logInd is a vector of natural numbers indicating which parameters
in par are on the logarithmic scale. Additional constraints, e.g., on the angle
of the diffusion anisotropy α or on the drift terms µx and µy are set by using
the ’L-BFGS-B’ algorithm called by setting method="L-BFGS-B" in the optim
function. The results show the estimated parameters, transformed back to the
original scale, as well as 95% confidence intervals. Evaluating the likelihood for
this 8000 dimensional Gaussian process (20×20×20) takes about 0.008 seconds
on a desktop PC (AMD Athlon(tm) 64 X2 Dual Core Processor 5600+). This is
achieved without applying any dimension reduction. The entire inference takes
less than 12 seconds.

> ## Simulate data
> n <- 20
> T <- 20
> par <- c(rho0=0.1,sigma2=0.2,zeta=0.5,rho1=0.1,
+ gamma=2,alpha=pi/4,muX=0.2,muY=-0.2,tau2=0.01)
> spateSim <- spate.sim(par=par,n=n,T=T,seed=4)
> w <- spateSim$w
> ## Initial values for optim
> parI <- c(rho0=0.2,sigma2=0.1,zeta=0.25,rho1=0.01,gamma=1,
+ alpha=0.3,muX=0,muY=0,tau2=0.005)
> ## Transform to log-scale
> logInd=c(1,2,3,4,5,9)
> parI[logInd] <- log(parI[logInd])
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> ## Maximum likelihood estimation using optim
> wFT <- real.fft.TS(w,n=n,T=T)
> spateMLE <- optim(par=parI,loglike,control=list(trace=TRUE,maxit=1000),
+ wFT=wFT,method="L-BFGS-B",
+ lower=c(-10,-10,-10,-10,-10,0,-0.5,-0.5,-10),
+ upper=c(10,10,10,10,10,pi/2,0.5,0.5,10),
+ negative=TRUE,logScale=TRUE,
+ logInd=c(1,2,3,4,5,9),hessian=TRUE,n=n,T=T)

iter 10 value -4963.022726
iter 20 value -5010.395807
iter 30 value -5044.942163
iter 40 value -5045.149937
final value -5045.150594
converged

> mle <- spateMLE$par
> mle[logInd] <- exp(mle[logInd])
> sd=sqrt(diag(solve(spateMLE$hessian)))
> ## Calculate confidence intervals
> MleConfInt <- data.frame(array(0,c(4,9)))
> colnames(MleConfInt) <- names(par)
> rownames(MleConfInt) <- c("True","Estimate","Lower","Upper")
> MleConfInt[1,] <- par
> MleConfInt[2,] <- mle
> MleConfInt[3,] <- spateMLE$par-2*sd
> MleConfInt[4,] <- spateMLE$par+2*sd
> MleConfInt[c(3,4),logInd] <- exp(MleConfInt[c(3,4),logInd])
> ## Results: estimates and confidence intervals
> round(MleConfInt,digits=3)

rho0 sigma2 zeta rho1 gamma alpha muX muY tau2
True 0.100 0.200 0.500 0.100 2.000 0.785 0.200 -0.200 0.010
Estimate 0.092 0.166 0.357 0.105 2.209 0.845 0.213 -0.177 0.010
Lower 0.077 0.136 0.180 0.088 1.847 0.753 0.177 -0.214 0.010
Upper 0.111 0.203 0.710 0.126 2.643 0.937 0.249 -0.139 0.011

5.4 Bayesian inference using MCMC

Using sample.four.coef and loglike a Markov chain Monte Carlo (MCMC)
algorithm for drawing from the joint posterior of the latent process α, or equiv-
alently ξ, and the hyper-parameters θ can be constructed.

One approach is to sample iteratively from [θ|·] using a Metropolis-Hastings
step and from [α|·] with a Gibbs step. In many situations, α and θ can be
strongly dependent a posteriory. Consequently, if one samples successively from
[θ|·] and [α|·], one can run into slow mixing properties. The reasons is that
in each step [θ|·] is constrained by the last sample of the latent process, and
vice versa. To circumvent this problem, one can sample jointly from [θ,α|·]. A
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joint proposal (θ∗,α∗) is obtained by sampling θ∗ from a Gaussian distribution
with the mean equaling the last value and an appropriately chosen covariance
matrix and then sampling α∗ from [α|θ∗, ·]. The second step can be done using
sample.four.coef. It can be shown that the acceptance probability then equals

min

(
1,

P [θ∗|w]

P [θ(i)|w]

)
, (11)

where the likelihood P [θ|w] denotes the value of the density of θ given w
evaluated at θ, and where θ∗ and θ(i) denote the proposal and the last value of θ,
respectively. Since this acceptance ratio does not depend on α, the parameters
θ can move faster in their parameter space. Note that P [θ|w] can be calculated
using the function loglike.

5.4.1 Skewed Tobit model and missing data

For the transformed Tobit model (9), inference is done analogously. One just
adds a Metropolis-Hastings step for the transformation parameter λ and a Gibbs
step for the censored values y(t, sl) = 0. The latter consists in simulating from
a censored normal distribution with mean ξ(i)(t, sl) and variance τ2. See Sigrist
et al. (2012) for more details.

As said, missing values can be dealt with by using a data augmentation
approach. This means that one adds a Gibbs step consisting in simulating from
a normal distribution with mean ξ(i)(t, sl) and variance (τ2)(i) for those points
where w(t, sl), or y(t, sl), are missing.

6 An MCMC algorithm

It is well known that the performance of MCMC algorithms can be very depen-
dent on the given data, and that data specific tuning is often needed. Having
this in mind, the function spate.mcmc implements an MCMC algorithm that
needs as little additional fine tuning as possible. It can deal with both Gaus-
sian and skewed Tobit likelihoods through the argument DataModel. Sampling
is done as outlined in the previous section. I.e., the coefficients α and the
hyper-parameters θ are sampled together to obtain faster mixing. Further, an
adaptive algorithm (Roberts and Rosenthal, 2009) is used. This means that the
proposal covariances RWCov for the Metropolis-Hastings step of θ are successively
estimated such that an optimal acceptance rate is obtained.

The function spate.mcmc returns an object of the class "spateMCMC" with,
among others, samples from the posterior of the hyper-parameters stored in the
matrix Post, the estimated proposal covariance matrix RWCov, and samples from
the posterior of the latent process ξ in xiPost if saveProcess=TRUE was chosen.
There are plot and print functions for "spateMCMC" objects.

6.1 Arguments of spate.mcmc

• If covariates x are given, the algorithm can either sample the coefficients
β in an additional Gibbs step from the Gaussian full conditional of the
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coefficients [β|·] (FixEffMetrop=FALSE) or sample β together with θ in
the Metropolis-Hastings step (FixEffMetrop=TRUE). The latter is prefer-
able since the random effects ξ and the fixed effects xβ can be strongly
dependent, which can result in very slow mixing if β and ξ are sampled
iteratively and not jointly.

• The number of samples to be drawn from the Markov chain is specified in
Nmc and the length of the burn-in in BurnIn.

• If the option trace=TRUE is selected, the MCMC algorithm prints running
status messages such as acceptance rates of the hyper-parameters and esti-
mated remaining computing time. Additionally, if choosing plotTrace=TRUE,
running trace plots of the Markov chains are generated. Further, using
SaveToFile=TRUE, the "spateMCMC" object can be successively saved in a
directory specified through path and file.

• Dimension reduction can be applied by setting DimRed=TRUE and specify-
ing through NFour the number of Fourier functions to be used.

• If the observations y are not on a grid, y can be a T × N matrix where
N(< n2) is the number of observation stations, and the coordinates of the
stations can be specified in the N × 2 matrix coord. Alternatively, one
can specify through the vector Sind at which grid point each observation
lies.

• If the boolean argument IncidenceMat equals TRUE, an incidence matrix
I is constructed and the model in (10) is used. In that case, dimension re-
duction needs to be done since one cannot use the fast spectral algorithms
in combination with the FFT anymore.

• Padding can be applied by choosing Padding=TRUE.

• The vector of integers indEst specifies which parameters should be esti-
mated and which not. By default this equals c(1,...,9). If, for instance,
one wants to fit a separable model, one can choose indEst=c(1,2,3,9)
in combination with SV=(0.2,0.1,0.25,0,0,0,0,0,0.001). The latter
sets the initial values of the diffusion and drift term to zero. Since they
are not sampled, they remain at zero.

For more details and explanations on, e.g., starting values, specification of
prior distributions, selection of output for monitoring the MCMC algorithm,
etc., see the help information of spate.mcmc.

6.2 Additional fine tuning

In case the MCMC algorithm still needs some fine tuning, the following argu-
ments can be varied:

• the initial covariance matrix RWCov,
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• the burn-in length BurnInCovEst before starting with the adaptive esti-
mation of RWCov,

• the minimal number of MCMC samples NCovEst required after the burn-in
for estimating RWCov.

Due to the adaptive nature of the algorithm, the initial choice of RWCov is less
important. However, if RWCov is overly large, the algorithm can have very small
acceptance rates with the chain barely moving at all. On the other hand, if
RWCov overly small, acceptance rates might be high, but the chain does not
cover the parameter space.

If choosing adequate an RWCov turns out difficult, we propose the following
strategy. For each hyper-parameter θi in θ, one searches for an appropriate
variance σ2

i when fixing all other parameters. This can be done by specifing
through the argument indEst which parameters should be estimated and which
not. For instance, if indEst=1, only for the first parameter ρ0 a Markov chain
is run, and the others are fixed. Using this, an appropriate σ2

i can be found
as follows. For instance, one starts with a very low σ2

i , and then increases it
subsequently until the acceptance rate for θi, when fixing all other parameters,
is at a reasonable level, say, around 0.4. After doing this for each parameter θi,
RWCov=diag(σ2

i ) can be used as initial covariance matrix. Note that the goal
is not to find an optimal proposal covariance matrix but rather just to get a
rough idea on the appropriate order of magnitude so that the algorithm is not
“degenerate” from the beginning.

6.3 An example of the use of spate.mcmc

The following code illustrates the use of spate.mcmc on a simulated data set.
The MCMC algorithm is run for 10000 samples with a burn-in of 2000. The
burn-in for the adaptive covariance estimation is 500 and the minimal num-
ber of samples required for estimating the proposal covariance matrix of the
Metropolis-Hasting step is also 500. This means that after 1000 samples, the
proposal covariance matrix is first estimated. Subsequently, it is estimated ev-
ery 500 samples based on the past excluding the first 500 samples from the
Markov chain. Figure 9 shows trace plots of the MCMC algorithm. The ver-
tical lines represent the burn-in period, and the horizontal lines are the true
values of the parameters. The figure shows how the mixing of the Markov chain
improves with increasing time. Note that the number of samples, 10000, is used
for illustration. In practice, more samples are needed.

> ## Simulate data
> par <- c(rho0=0.1,sigma2=0.2,zeta=0.5,rho1=0.1,
+ gamma=2,alpha=pi/4,muX=0.2,muY=-0.2,tau2=0.01)
> spateSim <- spate.sim(par=par,n=20,T=20,seed=4)
> w <- spateSim$w
> ## This is an example to illustrate the use of the MCMC algorithm.
> ## In practice, more samples (Nmc) are needed for a sufficiently
> ## large effective sample size.
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> spateMCMC <-spate.mcmc(y=w,x=NULL,SV=c(rho0=0.2,sigma2=0.1,
+ zeta=0.25,rho1=0.2,gamma=1,
+ alpha=0.3,muX=0,muY=0,tau2=0.005),
+ RWCov=diag(c(0.005,0.005,0.05,0.005,
+ 0.005,0.001,0.0002,0.0002,0.0002)),
+ Nmc=10000,BurnIn=2000,seed=4,NCovEst=500,
+ BurnInCovEst=500,trace=FALSE,Padding=FALSE)

> spateMCMC

Posterior of parameters:
Median 2.5 % 97.5 %

rho_0 0.09151798 0.075791669 0.10909257
sigma^2 0.17324097 0.142144435 0.22142933
zeta 0.36457843 0.112205001 0.64655163
rho_1 0.10796025 0.091442696 0.13150375
gamma 2.21058762 1.856203179 2.64283184
alpha 0.84013487 0.747082459 0.92371518
mu_x 0.21182190 0.175596745 0.25214613
mu_y -0.17956504 -0.217171052 -0.13986582
tau^2 0.01009896 0.009687484 0.01047601

Results based on 8000 MCMC samples after a burn-in of 2000 samples

The following code illustrates the use of spate.mcmc when an incidence
matrix approach (see (10)) is used in combination with dimension reduction.
This is the real data application used in Sigrist et al. (2012) where, roughly
speaking, the goal is to model a spatio-temporal precipitation field. We are not
showing any results here, but we only illustrate how the function spate.mcmc is
called. For more details, we refer to Sigrist et al. (2012). A skewed Tobit model
is used as data model. The observed data is not available on the full 100× 100
grid but only at 32 observation locations. Observations are made at 720 time
points. In the code below, y is a 720× 32 matrix, and covTS is a 2× 720× 32
array containing two covariates. Sind is a vector of length 32 indicating the grid
cells in which the observation stations lie. DataModel="SkewTobit" specifies
that a skewed Tobit likelihood is used. DimRed=TRUE and NFour=29 indicate
that a reduced dimensional model consiting of 29 Fourier functions is used.
By setting IncidenceMat=TRUE, we specify that an incidence matrix is used.
Finally, FixEffMetrop=TRUE indicates that the coefficients of the covariates are
sampled together with the hyper-parameters of the spatio-temporal model in
order to avoid slow mixing due to correlations between fixed and random effects.

> spateMCMC <- spate.mcmc(y=y,x=covTS,DataModel="SkewTobit",Sind=Sind,
+ n=100,DimRed=TRUE,NFour=29,
+ IncidenceMat=TRUE,FixEffMetrop=TRUE,Nmc=105000,
+ BurnIn=5000,Padding=TRUE,
+ NCovEst=500,BurnInCovEst=1000)
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> plot(spateMCMC,true=par,hist=FALSE,ask=FALSE)
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Figure 9: Trace plots from the MCMC algorithm. The vertical line shows the
burn-in, and the horizontal lines are the true values of the parameters.

6.4 Making predictions with spate.predict

The function spate.predict allows for making probabilistic prediction. It
takes a spateMCMC object containing samples from the posterior of the hyper-
parameters as argument. The function then internally calls spate.mcmc where
now the Metropolis-Hastings step for the hyper-parameters is skipped since these
are given, and simulation is only done for the latent coefficients α. In doing so,
samples from the predictive distribution are generated. The time points where
predictions are to be made are specified through the argument tPred. Spatial
points are either specified through sPred (grid points) or xPred and yPred (co-
ordinates). If no spatial points are selected, predictions will be made for the
entire fields at the time points chosen in tPred. In the example, we make pre-
dictions at time points t = 21, 22, 23 for the entire spatial fields using Nsim=100
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samples. Figure 10 shows means and standard deviations of the predicted fields.

> ## Make predictions
> predict <- spate.predict(y=w, tPred=(21:23),
+ spateMCMC=spateMCMC, Nsim = 100,
+ BurnIn = 10, DataModel = "Normal",seed=4)
> Pmean <- apply(predict,c(1,2),mean)
> Psd <- apply(predict,c(1,2),sd)
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Figure 10: Means and standard deviations of predicted fields.
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