Datasets provided for \texttt{spatstat}

Adrian Baddeley, Rolf Turner and Ege Rubak

For \texttt{spatstat} version 1.61-0

This document is an overview of the spatial datasets that are provided for the \texttt{spatstat} package.

To flick through a nice display of all the data sets that come with \texttt{spatstat} type \texttt{demo(data)}. To see information about a given data set, type \texttt{help(name)} where \texttt{name} is the name of the data set. To plot a given data set, type \texttt{plot(name)}.

Datasets in \texttt{spatstat} are “lazy-loaded”, which means that they can be accessed simply by typing their name. Not all packages do this; in some packages you have to type \texttt{data(name)} in order to access a data set.

To list all the datasets in \texttt{spatstat}, you need to type \texttt{data(package="spatstat.data"). This is because, for efficiency, the datasets are actually installed in a sub-package \texttt{spatstat.data}. This is the only time you should ever need to mention \texttt{spatstat.data} explicitly. When the \texttt{spatstat} package is loaded by the command \texttt{library(spatstat)}, the sub-package \texttt{spatstat.data} is automatically loaded.

1 List of datasets

1.1 Point patterns in 2D

Here is a list of the standard point pattern data sets that are supplied with the current installation of \texttt{spatstat.data}:
<table>
<thead>
<tr>
<th>name</th>
<th>description</th>
<th>marks</th>
<th>covariates</th>
<th>window</th>
</tr>
</thead>
<tbody>
<tr>
<td>amacrine</td>
<td>rabbit amacrine cells</td>
<td>cell type</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>anemones</td>
<td>sea anemones</td>
<td>diameter</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ants</td>
<td>ant nests</td>
<td>species</td>
<td>zones</td>
<td></td>
</tr>
<tr>
<td>bdspots</td>
<td>breakdown spots</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>bei</td>
<td>rainforest trees</td>
<td>-</td>
<td>topography</td>
<td></td>
</tr>
<tr>
<td>betacells</td>
<td>cat retinal ganglia</td>
<td>cell type, area</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>bramblecanes</td>
<td>bramble canes</td>
<td>age</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>bronzefilter</td>
<td>bronze particles</td>
<td>diameter</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>cells</td>
<td>biological cells</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>chorley</td>
<td>cancers</td>
<td>case/control</td>
<td>elevation, orientation, slope, land use</td>
<td></td>
</tr>
<tr>
<td>clmfires</td>
<td>forest fires</td>
<td>cause, size, date</td>
<td>-</td>
<td>faunal lines</td>
</tr>
<tr>
<td>copper</td>
<td>copper deposits</td>
<td>-</td>
<td>type</td>
<td></td>
</tr>
<tr>
<td>demopat</td>
<td>artificial data</td>
<td>type</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>finpines</td>
<td>trees</td>
<td>diam, height</td>
<td>-</td>
<td>elevation, orientation, slope, land use</td>
</tr>
<tr>
<td>gordon</td>
<td>people in a park</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>gorillas</td>
<td>gorilla nest sites</td>
<td>group, season</td>
<td>heat, water</td>
<td>elevation, orientation, slope, land use</td>
</tr>
<tr>
<td>hamster</td>
<td>hamster tumour cells</td>
<td>cell type</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>humberside</td>
<td>child leukaemia</td>
<td>case/control</td>
<td>-</td>
<td>elevation, orientation, slope, land use</td>
</tr>
<tr>
<td>hyytiala</td>
<td>mixed forest</td>
<td>species</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>japonesepines</td>
<td>Japanese pines</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>lansing</td>
<td>mixed forest</td>
<td>species</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>longleaf</td>
<td>trees</td>
<td>diameter</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>mucosa</td>
<td>gastric mucosa cells</td>
<td>cell type</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>murchison</td>
<td>gold deposits</td>
<td>-</td>
<td>faults, rock type</td>
<td></td>
</tr>
<tr>
<td>nbfires</td>
<td>wildfires</td>
<td>several</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>nztrees</td>
<td>trees</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>paracou</td>
<td>trees</td>
<td>adult/juvenile</td>
<td>-</td>
<td>elevation, orientation, slope, land use</td>
</tr>
<tr>
<td>ponderosa</td>
<td>trees</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>redwood</td>
<td>saplings</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>redwood3</td>
<td>saplings</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>redwoodfull</td>
<td>saplings</td>
<td>-</td>
<td>zones</td>
<td></td>
</tr>
<tr>
<td>shapley</td>
<td>galaxies</td>
<td>magnitude, recession, SE</td>
<td>-</td>
<td>elevation, orientation, slope, land use</td>
</tr>
<tr>
<td>simdat</td>
<td>simulated pattern</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>sporophores</td>
<td>fungi</td>
<td>species</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>spruces</td>
<td>trees</td>
<td>diameter</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>swedishpines</td>
<td>trees</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>urkiola</td>
<td>mixed forest</td>
<td>species</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>vesicles</td>
<td>synaptic vesicles</td>
<td>-</td>
<td>zones</td>
<td></td>
</tr>
<tr>
<td>waka</td>
<td>trees</td>
<td>diameter</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

The shape of the window containing the point pattern is indicated by the symbols (rectangle), (disc), (convex polygon) and (irregular polygon).

Additional information about the data set name may be stored in a separate list name.extra. Currently these are the available options:
<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ants.extra</td>
<td>field and scrub subregions; additional map elements; plotting function</td>
</tr>
<tr>
<td>bei.extra</td>
<td>covariate images</td>
</tr>
<tr>
<td>chorley.extra</td>
<td>incinerator location; plotting function</td>
</tr>
<tr>
<td>gorillas.extra</td>
<td>covariate images</td>
</tr>
<tr>
<td>nbfires.extra</td>
<td>inscribed rectangle; border type labels</td>
</tr>
<tr>
<td>ponderosa.extra</td>
<td>data points of interest; plotting function</td>
</tr>
<tr>
<td>redwoodfull.extra</td>
<td>subregions; plotting function</td>
</tr>
<tr>
<td>shapley.extra</td>
<td>individual survey fields; plotting function</td>
</tr>
<tr>
<td>vesicles.extra</td>
<td>anatomical regions</td>
</tr>
</tbody>
</table>

For demonstration and instruction purposes, raw data files are available for the datasets vesicles, gorillas and osteo.

1.2 Other Data Types

There are also the following spatial data sets which are not 2D point patterns:

<table>
<thead>
<tr>
<th>name</th>
<th>description</th>
<th>format</th>
</tr>
</thead>
<tbody>
<tr>
<td>austates</td>
<td>Australian states</td>
<td>tessellation</td>
</tr>
<tr>
<td>cetaceans</td>
<td>marine survey</td>
<td>replicated 2D point patterns</td>
</tr>
<tr>
<td>chicago</td>
<td>crimes</td>
<td>point pattern on linear network</td>
</tr>
<tr>
<td>demohyper</td>
<td>simulated data</td>
<td>replicated 2D point patterns with covariates</td>
</tr>
<tr>
<td>dendrite</td>
<td>dendritic spines</td>
<td>point pattern on linear network</td>
</tr>
<tr>
<td>flu</td>
<td>virus proteins</td>
<td>replicated 2D point patterns</td>
</tr>
<tr>
<td>heather</td>
<td>heather mosaic</td>
<td>binary image (three versions)</td>
</tr>
<tr>
<td>osteo</td>
<td>osteocyte lacunae</td>
<td>replicated 3D point patterns with covariates</td>
</tr>
<tr>
<td>pyramidal</td>
<td>pyramidal neurons</td>
<td>replicated 2D point patterns in 3 groups</td>
</tr>
<tr>
<td>residualspaper</td>
<td>data & code from Baddeley et al (2005)</td>
<td>2D point patterns, R function</td>
</tr>
<tr>
<td>simba</td>
<td>simulated data</td>
<td>replicated 2D point patterns in 2 groups</td>
</tr>
<tr>
<td>spiders</td>
<td>spider webs</td>
<td>point pattern on linear network</td>
</tr>
<tr>
<td>waterstriders</td>
<td>insects on water</td>
<td>replicated 2D point patterns</td>
</tr>
</tbody>
</table>

Additionally there is a dataset Kovesi containing several colour maps with perceptually uniform contrast.

2 Information on each dataset

Here we give basic information about each dataset. For further information, consult the help file for the particular dataset.

amacrine: Amacrine cells

Locations of displaced amacrine cells in the retina of a rabbit. There are two types of points, “on” and “off”.

> plot(amacrine)
anemones: Sea Anemones
These data give the spatial locations and diameters of sea anemones on a boulder near sea level.

> plot(anemones, markscale=1)

ants: Ants’ nests
Spatial locations of nests of two species of ants at a site in Greece. The full dataset (supplied here) has an irregular polygonal boundary, while most analyses have been confined to two rectangular subsets of the pattern (also supplied here).

> ants.extra$plotit()
austates: **Australian states**

The states and large mainland territories of Australia are represented as polygonal regions forming a tessellation.

> plot(austates)

bdspots: **Breakdown spots**

A list of three point patterns, each giving the locations of electrical breakdown spots on a circular electrode in a microelectronic capacitor.

> plot(bdspots, equal.scales=TRUE, pch="*",
+ panel.args=function(i)list(cex=c(0.15, 0.2, 0.7)[i]))
bei: Beilschmiedia data

Locations of 3605 trees in a tropical rain forest. Accompanied by covariate data giving the elevation (altitude) and slope of elevation in the study region.

```r
> plot(bei.extra$elev, main="Beilschmiedia")
> plot(bei, add=TRUE, pch=16, cex=0.3)
```

```
> M <- persp(bei.extra$elev,
+   theta=-45, phi=18, expand=7,
+   border=NA, apron=TRUE, shade=0.3,
+   box=FALSE, visible=TRUE,
+   main="")
> perspPoints(bei, Z=bei.extra$elev, M=M, pch=16, cex=0.3)
```
betacells: Beta ganglion cells

Locations of beta ganglion cells in cat retina, each cell classified as ‘on’ or ‘off’ and also labelled with the cell profile area.

> `plot(betacells)`

bramblecanes: Bramble canes

> `plot(bramblecanes, cols=1:3)`
bronzefilter: Bronze filter section profiles

Spatially inhomogeneous pattern of circular section profiles of particles, observed in a longitudinal plane section through a gradient sinter filter made from bronze powder.

> plot(bronzefilter, markscale=2)
cells: Biological cells
Locations of the centres of 42 biological cells observed under optical microscopy in a histological section. Often used as a demonstration example.

> `plot(cells)`

cetaceans: Survey of marine species
Recorded sightings of whales, dolphins and other marine species in a series of surveys. Replicated 2D marked point patterns.

> `plot(cetaceans.extra$patterns, main="Cetaceans data", cols=1:5, hsep=1)`
chicago: Chicago crimes

Locations (street addresses) of crimes reported in a two-week period in an area close to the University of Chicago. A multitype point pattern on a linear network.

```r
> plot(chicago, main="Chicago Crimes", col="grey",
+       cols=c("red", "blue", "black", "blue", "red", "blue", "blue"),
+       chars=c(16,2,22,17,24,15,6), leg.side="left", show.window=FALSE)
```

chorley: Chorley-Ribble cancer data

Spatial locations of cases of cancer of the larynx and cancer of the lung, and the location of a disused industrial incinerator. A marked point pattern, with an irregular window and a simple covariate.

```r
> chorley.extra$plotit()
```
clmfires: Castilla-La Mancha Fires

Forest fires in the Castilla-La Mancha region of Spain between 1998 and 2007. A point pattern with 4 columns of marks:
- *cause*: cause of fire
- *burnt.area*: total area burned, in hectares
- *date*: date of fire
- *julian.date*: date of fire in days since 1.1.1998

```r
> plot(clmfires, which.marks="cause", cols=2:5, cex=0.25,
+    main="Castilla-La Mancha forest fires")
```

The accompanying dataset `clmfires.extra` is a list of two items `clmcov100` and `clmcov200` containing covariate information for the entire Castilla-La Mancha region. Each of these two elements is a list of four pixel images named `elevation`, `orientation`, `slope` and `landuse`.

```r
> plot(clmfires.extra$clmcov200, main="Covariates for forest fires")
```

11
Covariates for forest fires

- **Elevation**: 500, 1000, 2000
- **Orientation**: 50, 150, 250, 350
- **Slope**: 10, 20, 30, 40
- **Landuse**: Urban, Conifer, Bush

Copper: Queensland copper data

These data come from an intensive geological survey in central Queensland, Australia. They consist of 67 points representing copper ore deposits, and 146 line segments representing geological ‘lineaments’, mostly faults.

```r
> plot(copper$Points, main="Copper")
> plot(copper$Lines, add=TRUE)
```

Demohyper

A synthetic example of a hyperframe for demonstration purposes.

```r
> plot(demohyper, quote({ plot(Image, main=""); plot(Points, add=TRUE) })),
+ parargs=list(mar=rep(1,4)))
```
demohyper

A synthetic example of a point pattern for demonstration purposes.

> plot(demopat)

demopat

Dendrites are branching filaments which extend from the main body of a neuron (nerve cell) to propagate electrochemical signals. Spines are small protrusions on the dendrites.

This dataset gives the locations of 566 spines observed on one branch of the dendritic tree of a rat neuron. The spines are classified according to their shape into three types: mushroom, stubby or thin.

> plot(dendrite, leg.side="bottom", main="", cex=0.75, cols=2:4)
finpines: Finnish pine saplings

Locations of 126 pine saplings in a Finnish forest, their heights and their diameters.

```r
> plot(finpines, main="Finnish pines")
```

flu: Influenza virus proteins

The flu dataset contains replicated spatial point patterns giving the locations of two different virus proteins on the membranes of cells infected with influenza virus.

It is a hyperframe containing point patterns and explanatory variables.

```r
> wildM1 <- with(flu, virustype == "wt" & stain == "M2-M1")
> plot(flu[wildM1, 1, drop=TRUE],
+ main=c("flu data", "wild type virus, M2-M1 stain"),
+ chars=c(16,3), cex=0.4, cols=2:3)
```
flu data
wild type virus, M2–M1 stain

wt M2−M1 13
●● ●
● ●● ● ● ●● ● ●● ●
●
●
●● ● ●●●● ● ●● ●● ● ●
● ●● ● ... ●
●
●●● ●● ●●● ● ● ●●● ●● ● ●● ● ● ●●●
●● ● ●●●
●
●●
●
●● ●
●●● ●● ● ●●●
●●
●
● ●● ●●● ●● ●● ●● ●●
●
M1
M2

returns. It also belongs to the class

gorillas.extra is a named list of 7 pixel images (objects of class "im") containing spatial covariates. It also belongs to the class "listof".

> plot(gorillas, which.marks=1, chars=c(1,3), cols=2:3, main="Gorilla nest sites")
The vegetation covariate is also available as a raw ASCII format file,

```r
> system.file("rawdata/gorillas/vegetation.asc", package="spatstat")
```

hamster: Hamster kidney cells

Cell nuclei in hamster kidney, each nucleus classified as either ‘dividing’ or ‘pyknotic’. A multitype point pattern.

```r
> plot(hamster, cols=c(2,4))
```

heather: Heather mosaic

The spatial mosaic of vegetation of the heather plant, recorded in a 10 by 20 metre sampling plot in Sweden. A list with three entries, representing the same data at different spatial resolutions.

```r
> plot(heather)
```
humberside: Childhood Leukemia and Lymphoma

Spatial locations of cases of childhood leukaemia and lymphoma, and randomly-selected controls, in North Humberside. A marked point pattern.

> `plot(humberside)`

The dataset `humberside.convex` is an object of the same format, representing the same point pattern data, but contained in a larger, 5-sided convex polygon.

hyytiala: Mixed forest

Spatial locations and species classification for trees in a Finnish forest.

> `plot(hyytiala, cols=2:5)`
japaneseepines: Japanese black pine saplings
Locations of Japanese black pine saplings in a square sampling region in a natural forest. Often used as a standard example.

> plot(japaneseepines)

lansing: Lansing Woods
Locations and botanical classification of trees in a forest. A multitype point pattern with 6 different types of points. Includes duplicated points.

> plot(lansing)
> plot(split(lansing))

{lansing}

> plot(split(lansing))

longleaf: Longleaf Pines

Locations and diameters of Longleaf pine trees.

> plot(longleaf)
mucosa: Gastric Mucosa Cells
A bivariate inhomogeneous point pattern, giving the locations of the centres of two types of cells in a cross-section of the gastric mucosa of a rat.

```r
> plot(mucosa, chars=c(1,3), cols=c("red", "green"))
> plot(mucosa.subwin, add=TRUE, lty=3)
```

murchison: Murchison Gold Deposits
Spatial locations of gold deposits and associated geological features in the Murchison area of Western Australia. A list of three elements:

- **gold**, the point pattern of gold deposits;
- **faults**, the line segment pattern of geological faults;
- **greenstone**, the subregion of greenstone outcrop.
Murchison data

nbfires: New Brunswick Fires
Fires in New Brunswick (Canada) with marks giving information about each fire.

> plot(nbfires, use.marks=FALSE, pch=".")
\textbf{nztrees: New Zealand Trees}

Locations of trees in a forest plot in New Zealand. Often used as a demonstration example.

\begin{verbatim}
> plot(nztrees)
> plot(trim.rectangle(as.owin(nztrees), c(0,5), 0), add=TRUE, lty=3)
\end{verbatim}
osteo: Osteocyte Lacunae

Replicated three-dimensional point patterns: the three-dimensional locations of osteocyte lacunae observed in rectangular volumes of solid bone using a confocal microscope. A hyperframe containing 3D point patterns and explanatory variables.

```r
> plot(osteo[1:10,], main.panel="", pch=21, bg='white')
```

For demonstration and instruction purposes, the raw data from the 36th point pattern are available in a plain ascii file in the spatstat installation,

```r
> system.file("rawdata/osteo/osteo36.txt", package="spatstat")
```

paracou: Kimboto trees

Point pattern of adult and juvenile Kimboto trees recorded at Paracou in French Guiana. A bivariate point pattern.

```r
> plot(paracou, cols=2:3, chars=c(16,3))
```
ponderosa: Ponderosa Pines
Locations of Ponderosa Pine trees in a forest. Several special points are identified.

> ponderosa.extra$plotit()

pyramidal: Pyramidal Neurons in Brain
Locations of pyramidal neurons in sections of human brain. There is one point pattern from each of 31 human subjects. The subjects are divided into three groups: controls (12 subjects), schizoaffective (9 subjects) and schizophrenic (10 subjects).

> pyr <- pyramidal
> pyr$grp <- abbreviate(pyramidal$group, minlength=7)
> plot(pyr, quote(plot(Neurons, pch=16, main=grp)), main="Pyramidal Neurons")
Pyramidal Neurons

redwood, redwood3, redwoodfull: **Redwood seedlings and saplings**

California Redwood seedlings and saplings in a forest. There are two versions of this dataset: redwood and redwoodfull.

The redwoodfull dataset is the full data. It is spatially inhomogeneous in density and spacing of points.

The redwood dataset is a subset of the full data, selected because it is apparently homogeneous, and has often been used as a demonstration example. This comes in two versions commonly used in the literature: redwood (coordinates given to 2 decimal places) and redwood3 (coordinates given to 3 decimal places).

```r
> plot(redwood)
> plot(redwood3, add=TRUE, pch=20)
```

![redwood plot](image)

```r
> redwoodfull.extra$plotit()
```
residualspaper: Data from residuals paper

Contains the point patterns used as examples in

along with R code.

```r
> plot(as.solist(residualspaper[c("Fig1", "Fig4a", "Fig4b", "Fig4c")]), 
+ main="")
```

shapley: Shapley Galaxy Concentration

Sky positions of 4215 galaxies in the Shapley Supercluster (mapped by radioastronomy).

```r
> shapley.extra$plotit(main="Shapley")
```
simdat: Simulated data

Another simulated dataset used for demonstration purposes.

```r
> plot(simdat)
```

spiders: Spider webs

Spider webs across the mortar lines of a brick wall. A point pattern on a linear network.

```r
> plot(spiders, pch=16, show.window=FALSE)
```
sporophores: **Sporophores**

Sporophores of three species of fungi around a tree.

\[> \text{plot(sporophores, chars=c(16,1,2), cex=0.6)}\]
\[> \text{points}(0,0,pch=16, cex=2)\]
\[> \text{text}(15,8,"Tree", cex=0.75)\]

spruces: Spruces in Saxony

Locations of Norwegian spruce trees in a natural forest stand in Saxonia, Germany. Each tree is marked with its diameter at breast height.

\[> \text{plot(spruces, maxsize=\text{min(nndist(spruces))})}\]
swedishpines: Swedish Pines

Locations of pine saplings in a Swedish forest. Often used as a demonstration example.

> `plot(swedishpines)`

urkiola: trees in a wood

Locations of birch and oak trees in a secondary wood in Urkiola Natural Park (Basque country, northern Spain). Irregular window, bivariate point pattern.

> `plot(urkiola, cex=0.5, cols=2:3)`
waka: trees in Waka National Park

Spatial coordinates of each tree, marked by the tree diameter at breast height.

```r
> par(mar=c(0,0,2,0))
> plot(waka, markscale=0.04, main=c("Waka national park", "tree diameters"))
```

vesicles: synaptic vesicles

Point pattern of synaptic vesicles observed in rat brain tissue.

```r
> v <- rotate(vesicles, pi/2)
> ve <- lapply(vesicles.extra, rotate, pi/2)
> plot(v, main="Vesicles")
> plot(ve$activezone, add=TRUE, lwd=3)
```
The auxiliary dataset `vesicles.extra` is a list with entries

- `presynapse` outer polygonal boundary of presynapse
- `mitochondria` polygonal boundary of mitochondria
- `mask` binary mask representation of vesicles window
- `activezone` line segment pattern representing the active zone.

For demonstration and training purposes, the raw data files for this dataset are also provided in the `spatstat` package installation:

- `vesicles.txt` spatial locations of vesicles
- `presynapse.txt` vertices of `presynapse`
- `mitochondria.txt` vertices of `mitochondria`
- `vesiclesimage.tif` greyscale microscope image
- `vesiclesmask.tif` binary image of `mask`
- `activezone.txt` coordinates of `activezone`

The files are in the folder `rawdata/vesicles` in the installation directory. The precise location of the files can be obtained using `system.file`, for example

```r
> system.file("rawdata/vesicles/mitochondria.txt", package="spatstat")
```

waterstriders: Insects on a pond

Three independent replications of a point pattern formed by insects on the surface of a pond.

```r
> plot(waterstriders)
```
waterstriders

Component_1

Component_2

Component_3