Residual G Function

Description

Given a point process model fitted to a point pattern dataset, this function computes the residual G function, which serves as a diagnostic for goodness-of-fit of the model.

Usage

1
   Gres(object, ...)

Arguments

object

Object to be analysed. Either a fitted point process model (object of class "ppm"), a point pattern (object of class "ppp"), a quadrature scheme (object of class "quad"), or the value returned by a previous call to Gcom.

...

Arguments passed to Gcom.

Details

This command provides a diagnostic for the goodness-of-fit of a point process model fitted to a point pattern dataset. It computes a residual version of the G function of the dataset, which should be approximately zero if the model is a good fit to the data.

In normal use, object is a fitted point process model or a point pattern. Then Gres first calls Gcom to compute both the nonparametric estimate of the G function and its model compensator. Then Gres computes the difference between them, which is the residual G-function.

Alternatively, object may be a function value table (object of class "fv") that was returned by a previous call to Gcom. Then Gres computes the residual from this object.

Value

A function value table (object of class "fv"), essentially a data frame of function values. There is a plot method for this class. See fv.object.

Author(s)

\adrian \ege

and Jesper Moller.

References

Baddeley, A., Rubak, E. and Moller, J. (2011) Score, pseudo-score and residual diagnostics for spatial point process models. Statistical Science 26, 613–646.

See Also

Related functions: Gcom, Gest.

Alternative functions: Kres, psstA, psstG, psst.

Model-fitting: ppm.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
    data(cells)
    fit0 <- ppm(cells, ~1) # uniform Poisson
    G0 <- Gres(fit0)
    plot(G0)
# Hanisch correction estimate
    plot(G0, hres ~ r)
# uniform Poisson is clearly not correct

    fit1 <- ppm(cells, ~1, Strauss(0.08))
    plot(Gres(fit1), hres ~ r)
# fit looks approximately OK; try adjusting interaction distance

    plot(Gres(cells, interaction=Strauss(0.12)))

# How to make envelopes
    ## Not run: 
    E <- envelope(fit1, Gres, model=fit1, nsim=39)
    plot(E)
    
## End(Not run)
# For computational efficiency
    Gc <- Gcom(fit1)
    G1 <- Gres(Gc)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.