Description Usage Arguments Details Value Nearest neighbours of each type Warnings Author(s) See Also Examples
Computes the distance from each point to its nearest neighbour in a point pattern. Alternatively computes the distance to the second nearest neighbour, or third nearest, etc.
1 2 3 4 5 
X,Y 
Arguments specifying the locations of
a set of points.
For 
... 
Ignored by 
k 
Integer, or integer vector. The algorithm will compute the distance to the

by 
Optional. A factor, which separates 
method 
String specifying which method of calculation to use.
Values are 
This function computes the Euclidean distance from each point
in a point pattern to its nearest neighbour (the nearest other
point of the pattern). If k
is specified, it computes the
distance to the k
th nearest neighbour.
The function nndist
is generic, with
a method for point patterns (objects of class "ppp"
),
and a default method for coordinate vectors.
There is also a method for line segment patterns, nndist.psp
.
The method for point patterns expects a single
point pattern argument X
and returns the vector of its
nearest neighbour distances.
The default method expects that X
and Y
will determine
the coordinates of a set of points. Typically X
and
Y
would be numeric vectors of equal length. Alternatively
Y
may be omitted and X
may be a list with two components
named x
and y
, or a matrix or data frame with two columns.
The argument k
may be a single integer, or an integer vector.
If it is a vector, then the kth nearest neighbour distances are
computed for each value of k specified in the vector.
If the argument by
is given, it should be a factor
,
of length equal to the number of points in X
.
This factor effectively partitions X
into subsets,
each subset associated with one of the levels of X
.
The algorithm will then compute, for each point of X
,
the distance to the nearest neighbour in each subset.
The argument method
is not normally used. It is
retained only for checking the validity of the software.
If method = "interpreted"
then the distances are
computed using interpreted R code only. If method="C"
(the default) then C code is used.
The C code is faster by two to three orders of magnitude
and uses much less memory.
If there is only one point (if x
has length 1),
then a nearest neighbour distance of Inf
is returned.
If there are no points (if x
has length zero)
a numeric vector of length zero is returned.
To identify which point is the nearest neighbour of a given point,
use nnwhich
.
To use the nearest neighbour distances for statistical inference,
it is often advisable to use the edgecorrected empirical distribution,
computed by Gest
.
To find the nearest neighbour distances from one point pattern
to another point pattern, use nncross
.
Numeric vector or matrix containing the nearest neighbour distances for each point.
If k = 1
(the default), the return value is a
numeric vector v
such that v[i]
is the
nearest neighbour distance for the i
th data point.
If k
is a single integer, then the return value is a
numeric vector v
such that v[i]
is the
k
th nearest neighbour distance for the
i
th data point.
If k
is a vector, then the return value is a
matrix m
such that m[i,j]
is the
k[j]
th nearest neighbour distance for the
i
th data point.
If the argument by
is given, then the result is a data frame
containing the distances described above, from each point of X
,
to the nearest point in each subset of X
defined by the factor by
.
If X
is a multitype point pattern
and by=marks(X)
, then the algorithm will compute,
for each point of X
, the distance to the nearest neighbour
of each type. See the Examples.
To find the minimum distance from any point of type i
to the nearest point of type j
, for all combinations of i
and
j
, use the R function aggregate
as
suggested in the Examples.
An infinite or NA
value is returned if the
distance is not defined (e.g. if there is only one point
in the point pattern).
Pavel Grabarnik [email protected] and \adrian.
nndist.psp
,
pairdist
,
Gest
,
nnwhich
,
nncross
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  data(cells)
# nearest neighbours
d < nndist(cells)
# second nearest neighbours
d2 < nndist(cells, k=2)
# first, second and third nearest
d1to3 < nndist(cells, k=1:3)
x < runif(100)
y < runif(100)
d < nndist(x, y)
# Stienen diagram
plot(cells %mark% (nndist(cells)/2), markscale=1)
# distance to nearest neighbour of each type
nnda < nndist(ants, by=marks(ants))
head(nnda)
# For nest number 1, the nearest Cataglyphis nest is 87.32125 units away
# Use of 'aggregate':
# minimum distance between each pair of types
aggregate(nnda, by=list(from=marks(ants)), min)
# Always a symmetric matrix
# mean nearest neighbour distances
aggregate(nnda, by=list(from=marks(ants)), mean)
# The mean distance from a Messor nest to
# the nearest Cataglyphis nest is 59.02549 units

Loading required package: nlme
Loading required package: rpart
spatstat 1.521 (nickname: 'Apophenia')
For an introduction to spatstat, type 'beginner'
Warning message:
Interpretation of arguments maxsize and markscale has changed (in spatstat version 1.370 and later). Size of a circle is now measured by its diameter.
Cataglyphis Messor
[1,] 87.32125 67.77905
[2,] 142.23924 66.03787
[3,] 41.59327 80.06248
[4,] 69.23150 47.16991
[5,] 161.31026 66.03787
[6,] 59.53990 37.33631
from Cataglyphis Messor
1 Cataglyphis 5.00000 12.20656
2 Messor 12.20656 18.78829
from Cataglyphis Messor
1 Cataglyphis 67.47011 36.27306
2 Messor 59.02549 46.12532
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.