Leverage and Influence Measures for Spatial Point Process Model

Share:

Description

Calculates all the leverage and influence measures described in influence.ppm, leverage.ppm and dfbetas.ppm.

Usage

1
2
3
4
5
6
   ppmInfluence(fit,
                what = c("leverage", "influence", "dfbetas"),
                ...,
                iScore = NULL, iHessian = NULL, iArgs = NULL,
                drop = FALSE,
                fitname = NULL)

Arguments

fit

A fitted point process model of class "ppm".

what

Character vector specifying which quantities are to be calculated. Default is to calculate all quantities.

...

Ignored.

iScore,iHessian

Components of the score vector and Hessian matrix for the irregular parameters, if required. See Details.

iArgs

List of extra arguments for the functions iScore, iHessian if required.

drop

Logical. Whether to include (drop=FALSE) or exclude (drop=TRUE) contributions from quadrature points that were not used to fit the model.

fitname

Optional character string name for the fitted model fit.

Details

This function calculates all the leverage and influence measures described in influence.ppm, leverage.ppm and dfbetas.ppm.

When analysing large datasets, the user can call ppmInfluence to perform the calculations efficiently, then extract the leverage and influence values as desired.

Value

A list containing the leverage and influence measures specified by what.

Author(s)

\adrian

See Also

leverage.ppm, influence.ppm, dfbetas.ppm

Examples

1
2
3
4
5
6
   X <- rpoispp(function(x,y) { exp(3+3*x) })
   fit <- ppm(X ~ x+y)
   fI <- ppmInfluence(fit)
   fI$influence
   fI$leverage
   fI$dfbetas

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.