sprinter: An R package for screening
prognostic interactions

[sabell Hoffmann, Murat Sariyar, Harald Binder
December 18, 2014

Contents

1 Intr lon 1

2

[3 How to use sprinter| 3
[3.-1 Using existing functions| oL 3
[3.2 Ewvaluating interactions|. Lo L 7
[3.3 Implementing new functions for pre-selecting covariates| 10

1 Introduction

In order to predict patients’ mortality risks, it is of special interest to determine pre-
dictive biomarkers. Multivariate risk prediction models are constructed to predict such
mortality risks. In order to generate sparse models for molecular data, established meth-
ods can be used, that are able to extract important main effects (such as elastic net [1],
LASSO [2] and CoxBoost [3]).

Some effects arise only if two genes interact, e.g. expression of one gene depends on
the expression level of the other gene. Such interactions may play an important role in
molecular applications.

Considering all two-way interactions increases the problem of multiple testing enor-
mously. Therefore, it is meaningful to pre-select possibly relevant interactions to reduce
the number of interactions. Machine learning approaches such as penalized regression
models [4], logic regression [5], multifactor-dimensionality reduction [6] or random forest
[7] are able to pre-select relevant interaction terms in high-dimensional datasets.

The package sprinter offers a modular framework for pre-selecting important interac-
tions and building prognostic models for time-to-event settings [§] by combining available
statistical components. The framework consists of the following three steps (for a detailed
explanation, see below):

(1) Fitting a main effects model
(2) Modifying the data and pre-selecting interaction terms
(3) Building a comprehensive considering interactions

In addition to the model building step, our package provide a method to evaluate the
relevance of selected interactions within the final model.

In the first step of our strategy, a main effects model is fitted in oder to determine
the relevant main effects. These main effects will be used in the second step to generate
a modified data set. With this modified data set, weaker interaction effects are no
longer masked by the stronger main effects. After modifying the data, possibly relevant
interaction terms are pre-selected. In the last step, the final model is fitted by using
the main effects detected in step (1) and the interaction terms detected in step (2) as
covariates.

The package sprinter offers a new approach to interaction detection and has the
following achievements:

1. The modular structure of this approach leads to the simultaneous consideration of
main effects and interactions in high-dimensional data sets.

2. Tt is possible to compare the main effects extracted by the main effects model with
those selected by the final model in order to assess the relevance of the main effects.

3. It is a flexible approach in which different statistical methods can be combined in
order to perform the different steps.

2 Data sets

To demonstrate how the package works, simulated data sets are provided for which the
true effects are known. The function simul.int creates exponentially distributed survival
times with baseline hazard lambda. The number of covariates is p and the sample size
is n. All covariates are standard normally distributed. The number of true main effects
and the number of true interactions are given by n.main and n.int. The interactions
are generated by multiplications of non-main-effects variables. The absolute effect sizes
of the main effects is assigned to beta.main, and the absolute effect sizes of the true
interactions are assigned to beta.int.
We use the following settings for simulating the data set:

library(sprinter)
simulation <- simul.int(seed = 12345,n = 200, p = 500,
beta.int = 1,
beta.main = 0.9,
censparam = 1/20,
lambda = 1/20)
data <- simulation$data

The function simul.int returns two components: the simulated data set (data) and
information about the main effects and interactions and their effect sizes (info). The
information about the true main effects and interactions is printed as follows:

print(simulation$info)

ID Effect size
##H 1 ID1 0.9
#it 2 ID2 -0.9
3 ID3:ID4 1
4 ID5:ID6 -1

Figure[I]shows the Kaplan-Meier curve of the simulated data set. The question we are
going to address is the following: Is it possible to find true interactions in such a data
set together with true main effects?

3 How to use sprinter

3.1 Using existing functions

sprinter provides a prognostic model after pre-selecting relevant interactions and main
effects. Methods for pre-selecting the important variables can be set in the arguments
screen.main and screen.inter.

sprinter(x,
time,
status,
mandatory= NULL,
repetitions = 25,
n.inter.candidates =1000,
screen.main,
screen.inter = fit.rf,
fit.final = screen.main,
args.screen.main = list(),
args.screen.inter = list(),
args.fit.final = args.screen.main,
orthogonalize = TRUE,
parallel = FALSE, mc.cores = detectCores(), ...)

To pre-select the important main effects, it is possible to perform CoxBoost or uni-
variate Cox regressions; the parameter screen.main accepts a value in the form of a
function to indicate the desired approach. Using the function fit.CoxBoost means to
select the main effects which are chosen by CoxBoost and using fit.uniCox means to
select variables with adjusted p-values [9] smaller than sig. Functions fit.CoxBoost

Figure 1: Kaplan-Meier simulated data set.

and fit.uniCox are adapted function for the usage in sprinter (see more information
in Section . The arguments for the methods used for screening the main effects can
be set in args.screen.main.

Correspondently, the approach for screening interactions is assigned to screen.inter.
It is possible to perform this step by using random forest (screen.inter = fit.rf) or by
using logic regression (screen.inter = fit.logicReg). For more information about the
structure of the adapted functions fit.rf and fit.logicReg, see Section By using
random forest for each variable, a variable importance measurement is calculated that
considers the underlying interaction structure and reflects the meaning of a variable for
the forest. By default the permutation accuracy importance [I0] is used for evaluating the
variables in the forest. This measure can be replaced by other importance measures such
as minimal depth. The variable importance is used to construct the relevant interactions
for the model. The random forest arguments can be set in args.screen.inter.

In very large data sets the number of variables must be restricted in order to preselect
relevant interactions. To be able to perform random forest or logic regression in such data
sets, use fit.rf.select, respectively fit.logicReg.select. These functions restrict
the data set by selecting the variables with the n.select smallest p-values evaluated
by univariate Cox regressions before performing random forest, respectively the logic
regression.

Before pre-selecting the interactions, the data are modified such that weaker interac-
tions can be detected more easily (orthogonalize = TRUE). All variables are orthogonal-
ized to those that are assessed as main effects in the first step.

For better stabilization subsamples are created and random forests are performed on
each subsampled data set. The number of subsamples can be set in repetitions (default
value: 25). To summarize the results of all subsamples, variable inclusion frequencies
(VIFs) of the constructed interactions terms are computed and the n.inter.candidates
most frequent pairs are selected as relevant interaction terms. As the pre-selection of
interactions can be computationally expensive it is possible to parallelize this step by
parallel = TRUE.

Further approaches for screening main effects and interactions can be implemented by
the user, see Section

As an example we perform sprinter to screen main effects by CoxBoost and to detect
interactions by random forest:

set.seed(518)

testcb <- sprinter(x=datal,1:500],
time = data$obs.time,
status= data$obs.status,
repetitions = 25,
mandatory = c("ID1","ID2"),
n.inter.candidates = 10000,
screen.main = fit.CoxBoost,
screen.inter = fit.rf,
fit.final = fit.CoxBoost,

parallel = TRUE)

Clinical covariates can be specified in the argument mandatory as a vector to be force-
fully included in a model. In this example we set the main effects "ID1" and "ID2" to
mandatory; these are the colnames of the mandatory covariates in the data set data.
To build the final model, the user can choose between CoxBoost and univariate Cox-
regression, as in the main effects model building step. In contrast to building the main
effects model, the final model is constructed using the variables selected in the main ef-
fects model plus the n.inter.candidates pre-selected interactions of the screening step.
In this example we choose CoxBoost for fitting the final model. As an example for using
args.screen.main, a comment is included on how to set arguments for the CoxBoost
approach. For more information about using CoxBoost see [11] .

As a result, sprinter prints the candidates for interactions with the largest inclusion
frequencies together with the final model.

print(testcb)

Top 20 Interaction Candidates with Inclusion Frequencies:

ID2:1ID1 ID19:1ID1 ID329:1ID1 ID4:1ID1 ID19:1ID2 ID329:1ID2
#it 24 23 23 22 22 22
ID329:1D4 ID54:1ID1 ID73:1ID1 ID4:ID2 1ID329:ID19 ID144:1ID1
#it 22 21 21 21 21 20
ID303:1ID1 ID54:1ID2 ID73:1ID2 ID19:1ID4 ID303:1D4 ID54:1ID19
#it 20 20 20 20 20 20
ID73:1ID19 ID329:ID303

#it 20 20

#i#t

Final model:

#it

35 boosting steps resulting in 11 non-zero coefficients (with 2
being mandatory)
partial log-likelihood: -403.6513

In this example the final model consists of eleven variables. To obtain more information
about the variables selected in the models call summary (), as in the following command:

summary (testcb)

Main candidates with coefficients:
ID1 ID2 ID4 ID12 ID37
0.99687801 -0.70730288 0.01396648 0.02875253 -0.15896531

#HH
Top 20 Interaction Candidates with Inclusion Frequencies:

#it ID2:1ID1 ID19:ID1 ID329:1ID1 ID4:ID1 ID19:1ID2 ID329:1D2
#i# 24 23 23 22 22 22
ID329:1ID4 ID54:1ID1 ID73:1ID1 ID4:ID2 1ID329:ID19 ID144:1D1
#i#t 22 21 21 21 21 20
ID303:ID1 ID54:1ID2 ID73:1ID2 ID19:1D4 ID303:ID4 ID54:ID19
#it 20 20 20 20 20 20
ID73:ID19 ID329:ID303

#it 20 20

##

Final Model:

35 boosting steps resulting in 11 non-zero coefficients (with 2 being
mandatory)

partial log-likelihood: -403.6513

#HH

Parameter estimates for mandatory covariates at boosting step 35:
Estimate

ID1 0.9792

ID2 -0.7772

#H

Optional covariates with non-zero coefficients at boosting step 35:
parameter estimate > O:

1ID1, ID3:ID4, ID4:ID373, ID18:ID321, ID267:ID319

parameter estimate < O:

1ID2, ID37, ID39:ID358, ID214:ID412, ID230:ID319, ID401:ID498

The summary of sprinter shows the main candidates with their coefficients, the
interaction candidates with the largest inclusion frequencies and gives information about
the final model. In this example the true interaction ID3:ID4 is selected in the final
model with the correct sign for its parameter estimate. The second interaction ID5:1D6
is not included in this model; instead, seven interactions and one main effect are selected
which have no effect on the outcome.

For real data sets the true main effects and interactions are unknown. In order
to distinguish between true and false positive interactions, a subsampling step using
resample.sprinter, which is a wrapper, is performed. See Section

If the user wants to perform predictions with the final model, this package provides
the S3 method predict, which can be applied to objects of class sprinter.

3.2 Evaluating interactions

The sprinter package provides the possibility to evaluate the relevance of an interaction
by using resampling techniques [12] and the resultant variable inclusion frequency (VIF).
The implemented wrapper resample.sprinter subsamples the original data set fold-

times and applies the whole procedure to each subsample. The proportion of samples
that should be drawn from the original data set can be set in the argument oob.rel
(default value: 0.632). The results of this wrapper are inclusion frequencies and mean
coefficients of each interaction term.

As an example we perform the function resample.sprinter on the data set we sim-
ulated in Section 2] For the purpose of displaying the results, we set the number of
subsamples to 25 with a subsampling frequency of 0.632. Although 20 cores are used
for running this operation, it needs about 15 minutes (system.time) to run. If the user
intends to test the function, it is possible reduce the system time by reducing the values
for fold and repetitions. On each subsample, the function sprinter is applied as in
the previous example (see Section .

set.seed(123)

resamcb <- resample.sprinter(x=datal,1:500],
time = data$obs.time,
status= data$obs.status,
fold = 25,
oob.rel = 0.632,
repetitions = 25,
mandatory = c("ID1","ID2"),
n.inter.candidates = 1000,
screen.main = fit.CoxBoost,
screen.inter = fit.rf,
fit.final = fit.CoxBoost,
parallel = T,mc.cores = 20)

For showing the results the summary() provides a plot of the mean coefficients of each
selected variable with their single coefficients and displays the mean coefficients of the

interactions with variable inclusion frequencies larger than 1/fold.

summary (resamcb)

QOOCSSIENRR.CD
S S
M N
T <
(Yot D
T TR O -
A LOGSHO IRy +—H (o2]
() YT TR [a)
| [LI N 00111 |
o _
—
+— LN ()
c - — =
5 o
o @
£ 2- °
o
8 QGD
o. E
- —
| [[[[
-0.5 0.0 0.5 1.0
Mean coefficient
Variable Inclusion Frequency Mean Coefficient
ID3:1ID4 0.44 0.41023042
ID5:1ID6 0.16 -0.31689659
ID1:ID330 0.12 -0.08676463
ID208:ID390 0.12 0.09053558
ID4:ID358 0.12 -0.02938755
ID1:ID300 0.12 -0.05811525
ID214:ID412 0.12 -0.10781557
ID1:ID78 0.08 0.05196649
ID71:1D361 0.08 -0.08750961
ID101:ID440 0.08 0.05351890
ID290:ID370 0.08 -0.03989412
ID2:ID10 0.08 0.09813999
ID394:1ID447 0.08 -0.04496056

The plot generated by summary () shows that the clinical covariates ID1 and ID2 are
the strongest main effects (on average 1.0234 and -0.7845). There are many false pos-

itive main effects and interactions in the final model which are chosen only once. To
distinguish between the true and the false positive interactions, the user can consult the
variable inclusion frequencies in the provided table. This table shows the variable inclu-
sion frequencies and the mean coefficients of the variables selected more often than once.
The true interactions have the highest variable inclusion frequencies of 44 percent and
16 percent. All other interactions have inclusion frequencies of 12 percent and lower.

For plotting the coefficients of the optional variables without the mandatory ones, the
user can set the argument optional = TRUE.

plot (resamchb, =T)
NDY -
<t @0
<
©) 0 <
O ool aN o
= O oo, -
LD cH — o
0 oo a
© 0O OO0 U RO O [L] |
o S]
< 8
+— © @
c
o N
o © 8
©
3 _
o
N
o —
' o)
©]
[[[[
-0.2 0.0 0.2 0.4

Mean coefficient

3.3 Implementing new functions for pre-selecting covariates.

In the current version of the package some methods are available to pre-select main
effects or to build the final model. It is easy to add further methods by implementing
new functions. By writing a new function for pre-selecting main effects ,the user should

10

at least enclose the following arguments for committing the data: time, status, x and
unpen.index.
As an example the code of the function fit.uniCox is printed as follows:

fit.uniCox

function (time, status, x, unpen.index = NULL, method = "bonferroni',
it sig = 0.05, ...)

{

#t pvalue <- beta <- rep(NA, ncol(x))

#it for (i in 1:ncol(x)) {

#t res <- coxph(Surv(time, status) ~ x[, il)

pvalue[i] <- summary(res)$coefficients[, 5]

#t betali] <- summary(res)$coefficients[, 1]

#it 3

#t pvalueadjust <- p.adjust(p = pvalue, method = method)

indmain <- unique{c(which(pvalueadjust < sig), unpen.index))
#it datamulti <- as.data.frame(x[, indmain])

#Hit cox <- coxph(Surv(time, status) ~ ., data = datamulti)

#it res <- list()

res$model <- cox

#it res$xnames <- colnames(x) [indmain]

#it res$indmain <- indmain

res$beta <- coefficients(cox)

#it return(res)

}

<environment: namespace:sprinter>

In the first part of the function the main effects are identified using univariate Cox
regressions. All variables with univariate adjusted p-values smaller than the significance
level sig are used for fitting the multivariate model. In the second part of the function
the multivariate Cox regression is fitted.

The resultant object returns a list comprising the following components:

model Cox proportional hazards model

xnames Names of the selected covariates
indmain Vector containing their indices
beta Vector of coefficients

If the user wants to implement a new function for pre-selecting interactions, the func-
tion has to enclose the following arguments:

11

nr: Value for displaying the actual resampling run.
data: Data frame containing the y-outcome and x-variables in the model.
indices: Indices indicating the samples of the subsample.

seed.interselect: Seed for random number generator.
As an example the code of the function fit.rf is printed as follows:

fit.rf

function (nr, data, indices, seed.interselect, ...)

{

cat (ar)

#it rsf <- rfsrc(Surv(time, status) ~ ., data = datal[indices,
1, big.data = T, seed = seed.interselect)

#t return(rsf$importance)

}

<environment: namespace:sprinter>

As a result, the function must provide a vector containing a variable importance mea-
sure for each variable in the data. This measure must be interpretable in such a way
that a positive value indicates that the investigated variable is relevant.

References

1]

7]

H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67,
pp- 301-320, Apr. 2005.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society (Series B), vol. 58, pp. 267-288, 1996.

H. Binder and M. Schumacher, “Incorporating pathway information into boosting es-
timation of high-dimensional risk prediction models,” BMC Bioinformatics, vol. 10,
no. 1, p. 18, 2009.

M. Y. Park and T. Hastie, “Penalized logistic regression for detecting gene interac-
tions,” Biostatistics, vol. 9, no. 1, pp. 30-50, 2008.

H. Schwender and K. Ickstadt, “Identification of snp interactions using logic regres-
sion,” Biostatistics, vol. 2008, pp. 9-187, 2007.

L. W. Hahn, M. D. Ritchie, and J. H. Moore, “Multifactor dimensionality reduction
software for detecting gene-gene and gene-environment interactions,” Bioinformat-
ics, vol. 19, no. 3, pp. 376-382, 2003.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

12

[8] M. Sariyar, I. Hoffmann, and H. Binder, “Combining techniques for screening and
evaluating interaction terms on high-dimensional time-to-event data.,” BMC bioin-
formatics, vol. 15, p. 58, 2014.

[9] S. Wright, “Adjusted p-values for simultaneous inference,” Biometrics, vol. 48, no. 4,
pp. 1005-1013, 1992.

[10] H. Ishwaran and et al, “High-Dimensional Variable Selection for Survival Data,”
JASA, vol. 105, no. 489, pp. 205-217, 2010.

[11] P. Buhlmann and T. Hothorn, “Boosting Algorithms: Regularization, Prediction
and Model Fitting,” Statistical Science, vol. 22, no. 4, pp. 477-505, 2007.

[12] W. Sauerbrei and et al, “Stability investigations of multivariable regression models
derived from low- and high-dimensional data.,” J Biopharm Stat, vol. 21, no. 6,
pp. 1206-31, 2011.

13

	Introduction
	Data sets
	How to use sprinter
	Using existing functions
	Evaluating interactions
	Implementing new functions for pre-selecting covariates.

