Nothing
## -----------------------------------------------------------------------------
library(SHELF)
p <- c(0.4, 0.6, 0.8)
bet <- fitdist(vals=p, probs=c(0.05, 0.5, 0.95), lower=0, upper=1)$Beta
bet
## ----message=FALSE,warning=FALSE----------------------------------------------
library(ggplot2)
ggplot(data.frame(p = c(0, 1)), aes(x = p)) +
stat_function(fun = dbeta, args=list(shape1=bet$shape1, shape2=bet$shape2)) +
ylab("Density")
## ----message=FALSE,warning=FALSE,results="hide"-------------------------------
library(survextrap)
nd_mod <- survextrap(Surv(years, status) ~ 1, data=colons, fit_method="opt")
## -----------------------------------------------------------------------------
print_priors(nd_mod)
## ----results="hide"-----------------------------------------------------------
round(nd_mod$coefs_mean,2)
sp <- nd_mod$mspline
## -----------------------------------------------------------------------------
nd_mod$prior_sample$haz_const()
## ----results="hide"-----------------------------------------------------------
p_meansurv(median=50, upper=80, mspline=sp)
## -----------------------------------------------------------------------------
prior_haz_const(mspline=sp,
prior_hscale = p_meansurv(median=50, upper=80, mspline=sp))
## -----------------------------------------------------------------------------
ndi_mod <- survextrap(Surv(years, status) ~ 1, data=colons, fit_method="opt",
prior_hscale = p_meansurv(median=50, upper=80, mspline=sp))
print_priors(ndi_mod)
## -----------------------------------------------------------------------------
set.seed(1)
haz_sim <- ndi_mod$prior_sample$haz(nsim=30)
ggplot(haz_sim, aes(x=time, y=haz, group=rep)) +
geom_line() + xlab("Years") + ylab("Hazard") + ylim(0,0.05)
## ----results="hide"-----------------------------------------------------------
set.seed(1)
haz_sim <- prior_sample_hazard(knots=sp$knots, degree=sp$degree,
coefs_mean = ndi_mod$coefs_mean,
prior_hsd = p_gamma(2,1),
prior_hscale = p_meansurv(median=50, upper=80, mspline=sp),
tmax=3, nsim=30)
## ----results="hide"-----------------------------------------------------------
set.seed(1)
haz_sim <- prior_sample_hazard(knots=sp$knots, degree=sp$degree,
coefs_mean = ndi_mod$coefs_mean,
prior_hsd = p_gamma(2,20),
prior_hscale = p_meansurv(median=50, upper=80, mspline=sp),
tmax=3, nsim=30)
ggplot(haz_sim, aes(x=time, y=haz, group=rep)) +
geom_line() + xlab("Years") + ylab("Hazard") + ylim(0,0.05)
## -----------------------------------------------------------------------------
set.seed(1)
ndi_mod$prior_sample$haz_sd()
## -----------------------------------------------------------------------------
set.seed(1)
prior_haz_sd(mspline=sp,
prior_hsd = p_gamma(2,5),
prior_hscale = p_meansurv(median=50, upper=80, mspline=sp),
quantiles = c(0.1, 0.5, 0.9),
nsim=1000)
## ----message=FALSE,warning=FALSE,results="hide"-------------------------------
library(dplyr)
nd_mod <- survextrap(Surv(years, status) ~ 1, data=colons, fit_method="mcmc",
chains=1, iter=1000,
prior_hsd = p_gamma(2,5))
qgamma(c(0.025, 0.975), 2, 5)
summary(nd_mod) %>% filter(variable=="hsd") %>% select(lower, upper)
## -----------------------------------------------------------------------------
prior_hr(p_normal(0, 2.5))
## -----------------------------------------------------------------------------
p_hr(median=1, upper=10)$scale
prior_hr(p_hr(median=1, upper=10))
## -----------------------------------------------------------------------------
prior_hr_sd(mspline=sp,
prior_hsd = p_gamma(2,5),
prior_hscale = p_meansurv(median=50, upper=80, mspline=sp),
prior_loghr = p_normal(0,1),
prior_hrsd = p_gamma(2,3),
formula = ~ treat,
newdata = list(treat = 1),
newdata0 = list(treat = 0),
quantiles = c(0.05, 0.95),
nsim=1000)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.