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This package provides several visualization functions for singular value decomposition (SVD), principal
component analysis (PCA), factor analysis (FA), logistic factor analysis (LFA), and other related methods.

Simulated data

To use in this vignette, we create a simulated dataset, with m=500 variables (rows) and n=20 samples (columns).
Particularly, it contains a latent variable that resembles a case-control study. After applying SVD to the
datasets, we also name the rows and the columns of the right singular vectors svd.obj$v for labels in
visualization.

set.seed(1234)
library(svdvis)
B = c(runif(100, min=0, max=1), rep(0,400))
L = c(rep(1, 10), rep(-1, 10))
L = L / sd(L)
E = matrix(rnorm(500*20), nrow=500)
Y = B %*% t(L) + E

svd.obj = svd(Y)
colnames(svd.obj$v) = paste0("V",1:20)
rownames(svd.obj$v) = paste0("Sample",1:20)

In this setup, a few right singular vectors contained in svd.obj$v may capture systematic variation in the
observed data Y. Since the right singular vectors are ordered according to the singular values in a descending
order, the top (or first) r right singular vectors refers to svd.obj$v[,1:r]. Note that principal components
(PCs) can be obtained by multiplying singular values svd.obj$d and right singular vectors svd.obj$v. All
examples in this vignette and all functions in svdvis can utilize weights="sv" to quickly visualize PCs.

Scree plot

A scree plot visualizes percentages of variance explained by singular vectors in a descending order. svd.scree
is simply a wrapper function using ggplot2. In high-dimensional datasets, the number of points in a scree
plot may be too large. It may be good to look at a subset of singular values. You can specify subr in
svd.scree function, which “zooms in” to the top subr singular values.

svd.scree(svd.obj, subr=5,
axis.title.x="Full scree plot", axis.title.y="% Var Explained")

## [1] "Your input data is treated as a SVD output, with u, d, v corresponding to left singular vector, singular values, and right singular vectors, respectively."
## [1] "Scree Plot"

## Warning: Removed 9 rows containing missing values (geom_point).
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First 5 singular values

## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]

Note that if subr is not specified, one full-sized scree plot is returned.

Paired scatterplots

Scatter plots are often utilized to look at the top 2 right singular vectors. svd.scatter produces a matrix of
scatterplots of all pairs among r right singular vectors.

svd.scatter(svd.obj)

## [1] "Your input data is treated as a SVD output, with u, d, v corresponding to left singular vector, singular values, and right singular vectors, respectively."
## [1] "Multiple Scatter Plots"
## [1] "It may not be good to visualize too many singular vectors or principal components at one."
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The above plot crams in too many pairs. We can specify r to visualize only the top r right singular vectors.
In this example, additional arguments such as group and alpha are included:

svd.scatter(svd.obj, r=3, alpha=.5,
group=c(rep("Group 1", 10), rep("Group 2", 10)))

## [1] "Your input data is treated as a SVD output, with u, d, v corresponding to left singular vector, singular values, and right singular vectors, respectively."
## [1] "Multiple Scatter Plots"

3



V
1

V
2

V
3

V1 V2 V3

Heat map

Let’s create a heat map of the top r=5 right singular vectors:

svd.heatmap(svd.obj, r=5)

## [1] "Your input data is treated as a SVD output, with u, d, v corresponding to left singular vector, singular values, and right singular vectors, respectively."
## [1] "SVD Heatmap"
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Parallel coordinates plot

A parallel coordinates plot shows r dimensions in r parallel lines, which are equally spaced. All data points
are rescaled to (0,1) and the top r singular vectors are visualized from left to right. Different groups are
colored accordingly:

svd.parallel(svd.obj, r=5, alpha=.5,
group=c(rep("Group 1", 10), rep("Group 2", 10)))

## [1] "Your input data is treated as a SVD output, with u, d, v corresponding to left singular vector, singular values, and right singular vectors, respectively."
## [1] "Parallel Coordinates Plot"
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Radial coordinates plot

A radial coordinates plot visualize r dimensions in a circle, around where r anchors are placed. Each of n
vectors is mapped onto a circle, using its data as spring constants. Prior to mapping, each column is rescaled
to have numeric values between 0 and 1.

svd.radial(svd.obj, r=3,
group=c(rep("Group 1", 10), rep("Group 2", 10)))

## [1] "Radial Visualization Plots"
## [1] "Your input data is treated as a SVD output, with u, d, v corresponding to left singular vector, singular values, and right singular vectors, respectively."
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Tips and remarks

All functions in svdvis use ggplot2. Therefore, the visual output can be saved and modified in a conventional
manner. Feel free to experiment the source codes for more complex or interesting cases.

While this vignette focused on using the results of SVD, an optional argument weights="sv" can be used for
visualizing PCs. Note that weights="sv" is simply calling weights = svd.obj$d[1:r].

Outputs from other dimension reduction methods can be used. Provide the r vectors to svd.obj in any
function. Note that the input must be a n * r matrix that contains r vectors as columns. An optional
argument group can be used to differentially indicate n samples (points, lines, etc).

For example, logistic factor analysis captures population structure from a large and diverse set of genome
sequences and is related to SVD and PCA. A R package lfa computes r logistic factors, as columns. You
can easily make a parallel coordinates plot (and others) by svd.parallel(svd.obj=lfa(genotypes, 10)).

7


	Simulated data
	Scree plot
	Paired scatterplots
	Heat map
	Parallel coordinates plot
	Radial coordinates plot
	Tips and remarks

