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Abstract

High-throughput genotyping and large scale phenotyping produces massive amounts
of data. In this vignette, we present a novel R package named synbreed for the analysis
of such data to derive genome-based predictions. It contains a collection of functions
required to fit and validate genomic prediction models in plant and animal breeding. This
covers data processing, data visualization and data analysis. Thereby a versatile analysis
pipeline is established within one software package. All functions are embedded within the
framework of a single, unified data object. The implementation is flexible with respect to a
wide range of data formats and models. The package fills an existing gap in the availability
of software for next-generation genetics research. Where necessary, the package provides
gateways to other software programs to extend the field of applications. The utility of
the package is demonstrated in this document using three large-scale example data sets
provided by the synbreedData R package: a simulated data set representing a maize
breeding program, a publicly available mice data set and a dairy cattle data set.

Keywords: genomic prediction, quantitative genetics, pedigree-based relatedness, marker-
based relatedness, data processing, visualization.

1. Introduction

The analysis of quantitative traits is of paramount interest in agricultural genetics. For
many traits such as yield, quality or resistance against diseases and environmental stress we
observe continuously distributed phenotypes. According to quantitative genetic theory, these
phenotypes are determined by the joint action of many genes, the so called quantitative trait
loci (QTL), and the environment (?). To understand the inheritance of quantitative traits and
to predict the unobservable genetic value of an individual are major challenges of agricultural
genetics. Recently, high-throughput genotyping technology delivering tens or hundreds of
thousands of single nucleotide polymorphism markers (SNPs) has become available for many
crop and livestock species. The genomes of a large number of individuals can now be analyzed
for their specific marker profile at high density, which allows estimating the proportion of
genotype-sharing between them as well as efficient tagging of QTL in segregation analyses.
In breeding, selection of the best genotypes can be conducted on high-density marker profiles
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once sufficiently accurate genome-based prediction models have been established. To achieve
this, genomic prediction models are developed based on large training populations for which
genotypic and phenotypic data are available. Once the best model is established, it can be
used to predict the unobservable genetic value of selection candidates based on their marker
profile.

Research on genomic prediction (GP) will be advanced through the availability of comprehen-
sive, user-friendly software that covers a wide range of analysis steps. In a recent review, ?
state the urgent demand for such software to bring GP from theory to practice. To provide a
framework for the analysis of GP data, we developed a novel add-on package named synbreed
devised for the open-source software R (?). Only an open source software package is flexible
enough to keep pace with advanced computational and methodological challenges. Our objec-
tives in the design of the package were (i) to provide user-friendly algorithms for non-trivial
methods required in the analysis of GP data, (ii) create an analysis framework using a single,
unified data object resembling a generic data structure which is suitable for a wide range of
statistical methods employing genotypic and phenotypic data such as GP, genome-wide asso-
ciation studies (GWAS) or QTL mapping, (iii) provide the methods within one open-source
software package to avoid data conversion and transfer between software packages, (iv) to
keep the implementation flexible with respect to the data structure for plant and animal ge-
netics, and (v) to provide a gateway to other software and R packages to broaden the type of
possible applications.

GP uses statistical models combining whole-genome data with phenotypic data. SNP effects
are estimated from a regression of the phenotype on the marker profile. However, with a
dense marker map, the model is over-parametrized. Typically, the number of SNPs p exceeds
the number of observations n. A solution is the usage of mixed models (?). Within this
framework, SNPs are used as direct predictors by modeling SNP effects or, alternatively, they
are used to estimate a marker-based relationship matrix between individuals (?). The latter
is used to model the variance-covariance structure for the genetic values. Recently, different
models using Bayesian regression models have become popular (??). The predictive ability of
a model for GP can be assessed using an out-of sample validation. If no independent test set
is available, cross-validation (CV) is used to exploit the predictive ability of a model (??).

Several software programs for genetics research, covering parts of the required methods, have
been released within the last years. The programs ASReml (?) and WOMBAT (?) pro-
vide restricted maximum likelihood (REML) estimation procedures for linear mixed models
with arbitrary variance-covariance structure. The program PLINK implements algorithms
for genome-wide association studies (GWAS) and identical-by-descent estimation. However,
these programs are not stand-alone. Within R, different packages that tangent issues for GP
are available: qtl for QTL analysis in experimental crosses (?), GenABEL for GWAS and
effective SNP data storage and manipulation (?), genetics with classes and methods for han-
dling genetic data (?) or BLR (?) for genome-based prediction models with Bayesian Ridge
and Bayesian Lasso regression. However, there is no comprehensive program covering the
specific needs of genetic researchers to analyze GP data.

In this article, we present how the synbreed package streamlines the analysis of GP data.
The first part of the article summarizes the available data classes and functions. The sec-
ond part shows by worked examples the application. The data management is guided by
a single, unified data object. This forms the basis for all functions including the coding of
the marker genotypes, algorithms to impute missing genotypes and linkage disequilibrium
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analysis. Moreover, we provide functions to estimate coefficients of relatedness for individu-
als based on both pedigree or marker data. We provide several possibilities to visualize the
objects generated by the synbreed package. We give by simulated and real data examples for
the application of these functions. Mixed Models and Bayesian Regression models are used to
predict genetic effects. The predictive ability of the models is compared by CV. Both, model
fit and validation using CV, can be performed using the data object including genotypes and
phenotypes directly. Finally, we give the computational requirements for the analysis steps
and present possible extensions of the package.

2. Statistical models

In this section, we present the statistical models used for the prediction of genetic values of
individuals from a training set of individuals with phenotypes and pedigree or genotypes. We
assume, that for each individual i = 1, ..., n a single phenotypic record is available. Moreover,
we consider a quantitative trait which can be modeled as being normal, i.e., yi = N(µ+gi, σ

2).
By µ, we denote the population mean and by σ2 the residual variance. The unobservable
genetic value gi is predicted by statistical models using different data sources such as marker
genotypes or pedigree.

In the mixed model“P-BLUP”, the genetic values are predicted using the pedigree information
to construct a variance-covariance structure for the individuals. Following ?, this model is
defined by

y = Xβ + Za + e (1)

where y is the n × 1 vector of phenotypic records, β is the vector of fixed effects and a is a
n× 1 vector of random effects. Observations are allocated to the fixed and random effects by
the corresponding design matrices X and Z. Fixed effects typically include the population
mean and macro-environment effects such as location or year. Genetic values are sampled
from a multivariate normal distribution

a ∼ N(0,Aσ2a)

where A is the additive numerator relationship matrix and σ2a the additive genetic variance
(?). The off-diagonal values of A are given by 2fi1i2 for individuals i1 and i2 where – for a
given pedigree – the coefficient of coancastry fi1i2 is computed by the expected probability
that two alleles are identical by descent (?). The diagonal value for individual i1 is 1 + Fi1
with Fi1 being the inbreeding coefficient. The n × 1 vector e denotes the residuals with
e ∼ N(0, Inσ

2) and In is the n-dimensional identity matrix. Best linear unbiased estimates
(BLUE) for the fixed effects β̂ and predictions for the random effects (BLUP) â are obtained
by solving the mixed model equations (MME) (?)[

X>X X>Z

Z>X Z>Z + A−1 σ
2

σ2
a

] [
β̂
â

]
=

[
X>y
Z>y

]

Estimates of the variance components σ̂2a and σ̂2 are obtained by REML estimation. A
prediction for the genetic value of individual i in the training set is given by âi.

Genotypic data is incorporated in the mixed model “G-BLUP”. Here, the relationship matrix
based on pedigree is replaced by the genomic relationship matrix based on marker data. With
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the genomic relationship matrix, random deviations from the expected relationship caused
by Mendelian sampling effects (?) can be quantified. The following equation for the genomic
relationship matrix in a random mating population was proposed by ?

U =
(W −P)(W −P)>

2
∑p
j=1 pj(1− pj)

(2)

where W is the marker matrix assigning p marker genotypes coded 0, 1 or 2 to n individuals.
P is a n× p matrix with two times the minor allele frequency pj for j = 1, ..., p replicated n
times within each column. The model “G-BLUP” is

y = Xβ + Zu + e (3)

with
u ∼ N(0,Uσ2u)

where σ2u is the genetic variance pertaining to model “G-BLUP”. The remaining parameters
are defined as in model “P-BLUP”. A prediction for the genetic value for individuals in the
training set is given by ûi.

In the random regression model “RR-BLUP”, the phenotype is modeled as a function of the
individual SNP effects

y = Xβ + Wm + e (4)

where W is the n×pmarker matrix and m the p-dimensional vector of SNP effects. We assume
that m ∼ N(0, Iσ2m) where σ2m denotes the proportion of the genetic variance contributed by
each individual SNP. A prediction for the genetic value for individuals in the training set
is given by w>i m̂, where wi is the p-dimensional vector of marker genotypes of individual i
and m̂ the p-dimensional vector of estimated marker effects. Predicted genetic values and
variance components from model “RR-BLUP” are predictable from model “G-BLUP” (?). It
is computationally advantageous to use model “G-BLUP” when n < p because computation
times are of order O(n) and O(p), respectively.

The aforementioned models assume marker-homogeneous shrinkage of SNP effects. ? sug-
gested alternative models with marker-specific shrinkage. In this spirit, ? used Bayesian
Lasso to predict SNP effects. Their model, denoted by “BL”, is given by

y = Xβ + Wm + e (5)

All elements but m are defined as in “RR-BLUP”. The SNP effects m are modeled by marker-
specific prior distributions

m ∼ N(0,Tσ2)

with T = diag(τ21 , ..., τ
2
j , ..., τ

2
p ) and the following model hierarchy

τ2j ∼ Exp(λ2), j = 1, ..., p

λ2 ∼ Ga(α, β)

ei ∼ N(0, σ2), i = 1, ..., n

σ2 ∼ χ−2(ν, S2)

For details of the hyperparameters see ?. Parameter inference is performed within a Bayesian
framework. The joint posterior distribution cannot be evaluated analytically in general. Hence
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Markov chain Monte Carlo (MCMC) methods are used to generate samples from the full-
conditional posterior distributions. Since all full-conditional distributions are well-known
distributions, a Gibbs-Sampler can be utilized to generate a Markov chain (?). Prediction for
the genetic value of individuals are obtained like in model “RR-BLUP” as w>i m̂.

The implementation of GP requires the prediction of the genetic performance g∗ = (g1, ..., gn∗)>

of n∗ unphenotyped individuals. For model “RR-BLUP” and “BL”, the predicted genetic per-
formance is given by ĝ∗ = X∗β̂ + W∗>m̂ where X∗ denotes the design matrix for the fixed
effects and W∗ denotes the marker matrix for the unphenotyped individuals and m̂ the predic-
tion of the SNP effects obtained from the training set. For “P-BLUP”, the joint relationship
matrix must be defined for all individuals in the training set and the prediction set. Pre-
dictions are obtained by solving the mixed model equation for the genetic values a∗ of the
unphenotyped individuals using the estimates of the variance-components of the training set

y = Xβ + (Z,Q0)

(
a
a∗

)
+ e and

(
a
a∗

)
∼ N

([
0
0

]
,

[
A A∗

A∗> A∗∗

]
σ2a

)
(6)

with Q0 being a n × n∗ matrix with zeros and A the n × n additive numerator relationship
matrix for the individuals in the training set, A∗∗ the n∗×n∗ additive numerator relationship
matrix for the unphenotyped individuals and A∗ the n× n∗ additive numerator relationship
matrix of the individuals in the training set with the unphenotyped individuals. Predictions
for the genetic performance are obtained by ĝ∗ = Xβ̂ + a∗. The same prediction scheme
is employed for “G-BLUP”. Here, the genomic relationship matrix substitutes the additive
numerator relationship matrix in Equation 6 and σ2a is replaced by σ2u.

The out-of sample performance of a GP model determines the predictive ability. Cross-
validation is an assumption-free method to investigate the predictive ability of different models
(?). The data set is divided into k mutually exclusive subsets, k − 1 of them form the
estimation set (ES) for model training. The kth subset is used as independent test set (TS)
for prediction. The predictive ability of a model is the correlation r(ĝTS ,yTS) of the vector
of predicted genetic values ĝTS and the vector of observed phenotypes yTS of the individuals
in the TS. Typically individuals are assigned randomly to TS and ES. However, different
sampling strategies can be employed to account for population stratification. ? used within
and across family-sampling for biparental families. The prediction bias can be assessed from
a regression of the observed phenotype on the predicted genetic value (?). A regression
coefficient of 1 indicates an unbiased prediction, a coefficient smaller than 1 implies inflation,
a coefficient greater than 1 deflation of predicted genetic values compared to the observed
phenotypes.

3. The class gpData

Data for GP consists of multiple data sources. To simplify the flow and use of data, we
devised a data object named gpData (“genomic prediction Data”). Any object of class gpData
includes all data required for the analysis. The first step in an analysis using the synbreed
package is to create an object of class gpData. All additional functions utilize the predefined
structure. Thus, it is sufficient to create once an object with the appropriate structure and
use this for further analysis. The elements are phenotypes, genotypes and pedigree for a set
of individuals. In addition, further elements for meta information on markers and individuals



6 Analysis of Genomic Prediction Data

can be defined. The different elements are concatenated by common names for individuals
and markers. They are used for data queries like in a data base. It is no prerequisite that
all elements comprise the same subset of individuals or markers. Hence it is possible, e.g.,
to include individuals with genotypes but no phenotypes in an object of class gpData. This
general structure is suitable for a wide range of data and models as employed by GP, GWAS
or QTL studies.

The advantage of a single, unified data object are manifold. When data is shared, a single
data file is easier to transfer than multiple files. By using basic summary methods, a first
overview over all elements is forthcoming. Within the facilities of R, an object of class gpData
is stored within the sparse binary format. For example, the claimed storage space for the mice
data, described later in this article, was reduced from 95Mb in ASCII format to 8Mb in binary
format. An object of class gpData can also be used as storage for multi-year experiments.
New phenotypic data can be added over years or locations. In the following sections, the
different elements of an object of class gpData and their required structure are described in
more detail.

3.1. Phenotypic data

Phenotypic data is the outcome of performance tests for a set of individuals evaluating one
or more traits. In plant breeding this can be the yield of a line evaluated in a field trial or
in dairy cattle breeding the milk fat content measured in progeny testing. The phenotypic
data are stored within the element pheno. This is an array with individuals organized in
the first dimension and the traits organized in the second dimension. In case of repeated
measurements for individuals, a third dimension can be used. For input, either a data.frame

or an array can be used. In all cases, the phenotypic data will be converted to an array.

3.2. Genotypic data

The genotypic data is stored in the element geno. This is the marker matrix with individuals
organized in rows and markers in columns. In the era of SNPs, functions for data processing
are limited to biallelic markers. Each entry of the marker matrix depicts the observed genotype
of an individual for a marker. Marker genotypes can either be distinguished by their names
(e.g., "AA", "BB" and "AB") or by the observed alleles (e.g., "A/C","A/T",...).

3.3. Pedigree

Pedigree information for individuals is stored in the element pedigree. The pedigree is a
table of individuals of the current generation and their ancestors. The pedigree is sorted by
generation, beginning with the individuals with unknown parents (coded as "0"). The content
is an object of class pedigree created by the function create.pedigree. An object of class
pedigree is a data.frame with at least three/four variables, ID (required), Par1 (required),
Par2 (required), and gener for names of individuals, Parent 1, i.e., sire, and Parent 2, i.e.,
dam, and generation, respectively. For animals, an optional variable sex can be added.

3.4. Covariate information

Additional information on individuals is stored in the element covar. This is a data.frame

with a column id with the names of individuals that appear in geno, pheno or pedigree. Two
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automatically generated columns are added named phenotyped and genotyped. Both are
logical and identify the individuals that are phenotyped (observations in pheno) or genotyped
(observations in geno), respectively.

3.5. Marker map

The marker map is stored in element map of an object of class gpData. The map contains
meta information about the genetic or physical positions of the marker on the genome. More
precisely, the map is a data.frame with two columns named "chr" and "pos". The first
column identifies the chromosome (character or numeric) and the second is numeric indi-
cating the position of the marker on the genome. This can be the genetic position within the
chromosomes measured in centimorgan (cM) or the physical position relative to the reference
genome in base pairs.

3.6. Info

Element info is used internally for additional information such as the map unit.

Beside class gpData, several further object classes are defined within the synbreed package.
An overview over all available classes together with their elements as well as methods and
functions are given in Figure 1. More detailed information on the functions is given in the
next section.

4. Summary of functions

In this section, we present the main features of the synbreed package. Their application is
demonstrated by examples in Section 5. The preliminary step is to read-in raw data files in
the workspace, e.g., using function read.table.

4.1. Data processing

In all analyses using the synbreed package, the first step is to create an object of class gpData.
The function create.gpData merges the different raw data sources. The return value is a list
with elements covar, pheno, geno, map, pedigree and info. The function create.gpData

performs consistency checks on the data and returns an object of class gpData with the data
taken from the arguments. The basic call to create an object of class gpData is

R> gp <- create.gpData(covar,pheno,geno,map,pedigree)

An object of class gpData can be used as a data base with queries on individuals and markers.
With function discard.individuals, a subset of individuals can be excluded from the object
by removing the observations from covar, pheno, geno and pedigree. To add markers or
individuals to an object of class gpData, the functions add.markers and add.individuals

can be used. For subsequent analysis, other R packages often require a data.frame combining
response variables, i.e., the trait and the marker genotypes. An object of class gpData can
be converted to a data.frame using function gpData2data.frame. The function merges
phenotypic and genotypic data. Multiple records for each individual result in additional
rows. The data.frame can be extended by ungenotyped or unphenotyped individuals. This
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gpData

- covar
- pheno
- geno
- map 
- pedigree
- info

create.gpData
discard.markers
discard.individuals
add.markers
add.individuals
summary
summaryGenMap
plotGenMap

kin

gpMod

- fit
- model
- trainingSet
- y
- g
- m
- kin

summary
predict
manhattanPlot

gpMod

gpMod

    relationshipMatrix

summary
plot
write.relationshipMatrix

crossVal

crossVal

cvData

- PredAbi
- bias
...

summary

create.gpData

recode & impute

codeGeno

pedigree

- ID
- Par1
- Par2
- gener
(- sex)

summary
plot
create.pedigree
simul.pedigree

LDdf

- chr1
 - data.frame
...

LDDist

pairwiseLD

LDmat
- chr 1
 - LD
 - distance
...

LDMap

data.frame

gpData2data.frame

cross {qtl}

- geno
- pheno

summary
plot
...

cross2gpData

gpData2cross

- matrix

Figure 1: Overview of object classes, methods and functions within the synbreed package.
Each box indicates a class together with the class name, the elements and the available
functions and methods. The arrows indicate the data flow. The origin indicates the input
argument and the head is the return value of the function.

format applies to a variety of different functions in R. Moreover, we included functions for the
conversion from and to class cross in package qtl (?), see Figure 1.

The package synbreed provides several algorithms for the preprocessing of genotypic data.
The algorithms are condensed in the function codeGeno. The function evaluates the following
steps for the element geno within an object of class gpData.

1. Discard markers that exceed a given threshold for the fraction of missing values.

2. Recode marker genotypes from arbitrary coding into the number of copies of the minor
allele, i.e., 0, 1 and 2 (see below).

3. Impute missing values according to different algorithms (see below).
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4. Change the coding of minor and major allele whenever allele frequencies changed after
step 3.

5. Discard markers with a minor allele frequency (MAF) below a given threshold.

6. Discard duplicated markers, retain the first copy.

Depending on choice of arguments, not all steps are performed. A report can be printed on
the screen using argument verbose=TRUE. Below, we give more details on steps 2 and 3.

Step 2: Recode marker genotypes

Genotypic data in objects of class gpData can be raw marker data or output of other software,
e.g., from Illumina GenomeStudio (http://www.illumina.com/software/). Typically raw
genotypic data is either coded by marker genotypes, e.g., AA and BB for the homozygous geno-
types and AB for heterozygous genotypes for a locus phase or as pair of observed nucleotides,
e.g., A/A, A/T, G/T, ... . The order of the alleles is not of interest in GP. Nevertheless a com-
mon coding is required. This is in the synbreed package the number of copies of the minor
allele, i.e., 0, 1 and 2, for a single locus. Thus, homozygous marker genotypes are coded by
0 and 2 and heterozygous genotypes by 1. With this coding scheme the MAF for a marker j
can be computed as

pj =

n∑
i=1

wij

2n
, j = 1, ..., p

where wij is the marker genotype for individual i and marker j. The heterozygous genotype
must be labeled unambiguously. This can either be done by a character which clearly defines
the heterozygous state (e.g., “AB” for genotypes “AA”, “AB” and “BB”) or a function to
identify them if multiple labels declare a heterozygous genotype (e.g., first allele 6= second
allele for A/A, A/T, G/T, ...). With this algorithm, it is straightforward to translate every
coding scheme into the number of copies of the minor allele. Some examples will be presented
in Section 5.

Step 3: Imputing of missing marker genotypes

Imputing of missing marker genotypes is often a necessary data preprocessing step. Indeed,
many methods used in the analysis of GP data require a marker matrix without missing
values. In function codeGeno missing values in the marker matrix can be replaced by one of
the following algorithms (controlled by the argument impute.type):

1. Missing values are replaced using family information for fully homozygous individuals
(?). This requires a biparental family structure with a uniform S0 generation and
a family size of at least 6 individuals. In the algorithm, a missing observation i for
a marker j in family l is replaced according to the following rules: If marker j is
monomorphic in family l, the imputed value will be the observed allele. The assumption
in this case is, that both parents are homozygous for the same allele. If marker j is
polymorphic in family l, the missing value is replaced from the following distribution
P(xNAj = 0) = P(xNAj = 2) = 0.5.

http://www.illumina.com/software/
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2. The software Beagle (?) can be used to infer missing genotypes. Beagle uses a Hidden
Markov Model to reconstruct missing genotypes based on flanking markers. Function
codeGeno creates a directory beagle for Beagle input and output files, prepares input
files and runs Beagle with default settings. The information on marker position is taken
from element map. By default, three genotypes 0, 1, 2 are imputed using the allele with
the highest posterior probability. This information is obtained from the Beagle output.
In the special case of only homozygous genotypes, values are 0 and 2 according to their
“dosage”. The dosage is the estimated number of copies of the minor allele by the Beagle
software (?).

3. A combination of the algorithms above can be used. In the first step, missing genotypes
are imputed according to the family information. Here, the algorithm 1 is used for
monomorphic markers and those with unknown position on the genome. In the second
step, the remaining genotypes are imputed using Beagle as in algorithm 2.

4. Missing values are sampled from the marginal allele distribution for each marker. This
algorithm does not take into account data stratification. Missing values are sampled
from {0, 1, 2} assuming a population in Hardy-Weinberg equilibrium (?). Thus P(xNAj =

0) = (1− pj)2, P(xNAj = 1) = 2pj(1− pj) and P(xNAj = 2) = p2j . In the special case of

only homozygous genotypes, a missing value xNAj for marker j is replaced by a random

draw from {0, 2} using the probabilities P(xNAj = 0) = 1− pj and P(xNAj = 2) = pj .

5. Replacing missing values by a given value.

We recommend the use of Beagle whenever a dense marker map is available and neighboring
markers can be exploited for imputation. This software package is state-of-the-art in plant
and animal breeding. However, if information from sufficiently sized families is available, the
accuracy of imputing can be increased by the usage of algorithm 3. This algorithm is also
suitable for genotypic data where the marker map is sparse.

4.2. Data analysis

Linkage disequilibrium

Linkage disequilibrium (LD) is defined as the non-random association of alleles at different
loci. The extent of LD is determined by recombination, mutation, random drift and selection
in population history. With genotypic data, LD can be calculated as the difference between
the observed and expected (assuming random distributions) allele frequencies. There are
many possibilities to compute LD from genotypic data, see ? using the genetics package. In
the synbreed package, we use the measure r2 (?)

r2 =
D2
vw

pv(1− pv)pw(1− pw)
,

where Dvw = pvw − pvpw and pvw, pv and pw are the frequencies of haplotype vw and
allele v at one locus and allele w at the other locus. Pairwise LD between markers on
the same chromosome can be computed using function pairwiseLD. For the general case, a
gateway to the software PLINK is established to estimate the LD (argument use.plink=TRUE).
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This requires that PLINK is available (e.g. in the working directory). When using PLINK,
arguments ld.threshold and ld.window can be used the prune the output A fast within-R
solution is available for marker data with only 2 marker genotypes. The function has two
different return value types: matrix and data.frame. The first is a pairwise LD matrix
and the latter a list with one row for each marker pair. In both cases, results are returned
chromosome-wise. Moreover, the Euclidean distance of the markers based on the map is
computed.

Estimation of relatedness

The synbreed package provides a unified function kin to compute pedigree-based (expected)
and marker-based (realized) coefficients of relatedness. As shown in Figure 1, coefficients are
estimated for a set of individuals within an object of class gpData. The return value is an
object of class relationshipMatrix. This is a symmetric matrix with pairwise coefficients
of relatedness for a set of individuals.

The computation of the pedigree-based relationship matrix in synbreed starts with the ga-
metic relationship matrix. This approach requires only few assumptions and is very flexible
with respect to special cases, i.e., homozygous inbred lines. Moreover, this computation can
be extended to include two populations and dominance effects. The gametic relationship
matrix is of dimension 2n× 2n with n being the number of individuals in the pedigree. The
matrix contains the probability that two gametes are identical by descent (IBD), denoted
by the equivalent symbol ≡. The gametes of an individual i1 are denoted by X1 and X2,
the gametes of an individual i2 are denoted by Y1 and Y2. All diagonal values equal 1. The
secondary diagonals contain the inbreeding coefficients Fi1 = P(X2 ≡ X1). Both additive and
dominance relationships may be obtained from the gametic relationship matrix according to
the rules in ?.

Pedigree-based coefficients of relatedness include additive (argument ret="add"), dominance
(argument ret="dom") and kinship (argument ret="kin"). The additive relationship coeffi-
cient between two individuals is obtained by the sum of the four corresponding entries of the
allele combinations in the gametic relationship matrix divided by 2. The additive relatedness
between individuals i1 and i2 is given by (?)

2fi1i2 =
1

2
[P(X1 ≡ Y1) + P(X1 ≡ Y2) + P(X2 ≡ Y1) + P(X2 ≡ Y2)] .

The numerator relationship matrix described in Section 2 is constructed using all pairwise
coefficients 2fi1i2 on the off-diagonal and 1+Fi1 on the diagonal. The kinship between i1 and
i2 is defined as fi1i2 .

For non-inbred individuals, the dominance coefficients are

ti1i2 = P(X1 ≡ Y1) · P(X2 ≡ Y2) + P(X1 ≡ Y2) · P(X2 ≡ Y1).

If genotypic data is available, a genomic relationship can be constructed based on marker data.
The matrix of genomic relationship coefficients is computed using function kin with argument
ret="realized". This requires an object of class gpData where the data in geno is coded
by the number of copies of the minor allele, i.e., by using function codeGeno. The genomic
relationship matrix is computed according to Equation 2. Negative values indicate pairs of
individuals sharing fewer alleles than expected based on the allele frequencies and positive
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Argument Variance components 1

Model kin markerEffects model kinTS In/VarE

RR-BLUP NULL TRUE BLUP σ2m σ2

G-BLUP marker-based FALSE BLUP σ2u σ2

P-BLUP pedigree-based FALSE BLUP σ2a σ2

BL NULL FALSE BL σ2

Table 1: Overview over the possible models which can be fitted using gpMod depending on the
choice of arguments kin. 1: from the output using summary.gpMod, kinTS= Genetic variance
component modeled with kinship/relationship matrix of all individuals in the training set
(TS), In= Residual variance component modeled with n-dimension identity matrix I.

values indicate pairs of individuals sharing more alleles than expected from the marginal
allele distributions. The denominator in Equation 2 is the correction term for a random
mating population (?). Corrections for other populations may be obtained by multiplying
the resulting matrix by a constant. See ? for an example with homozygous inbred lines.

The genomic relationship can also be computed by the simple matching coefficient (?). This is
implemented with the argument ret="sm", but only for homozygous inbred lines. To account
for IBS but not IBD, ? proposed the correction (s− smin)/(1− smin) where s is the matrix of
all pairwise simple matching coefficients multiplied by 2 and smin the minimum of all n2 (n−1)
values in s (argument ret="sm-smin" within function kin).

Any object of class relationshipMatrix could easily be passed for further analysis to other
software packages. The function write.relationshipMatrix creates a table which could be
stored in an external file. Every row in the table depicts one element of the lower triangle.
The table is ordered by column names within row names which is the required format for
ASReml or by row names within column names which is the required format for WOMBAT.

Statistical models

The function gpMod provides a general interface to fit all models presented in Section 2. The
input argument is an object of class gpData. The training set for the model are all individuals
with phenotypes and genotypes (or pedigree for model “P-BLUP”). The mixed models “P-
BLUP”and“G-BLUP”are fitted using the REML algorithm in function regress implemented
in the package regress (?). Model “RR-BLUP” is derived from model “G-BLUP” using the
functional relationship between the models. In this case, in the first step “G-BLUP” is fitted
and then the mixed model equations are solved for the SNP effects. The Bayesian regression
models are fitted using the Gibbs-Sampler implemented in the BLR package (?). The variance-
covariance structure in the BLUP models “P-BLUP” and “G-BLUP” is defined within the
argument kin by an object of class relationshipMatrix, see Figure 1. An overview over
the possible arguments and the resulting models is given in Table 1. The data for model
training consists of all individuals with phenotypes and genotypes. All data are restricted to
individuals from the training set. We include the "..." argument to allow a subtle adjustment
of the model control. This includes the choice of hyper-parameters and MCMC options for
“BL”.

For all models, the function gpMod reports the names of all individuals in the training set
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together with their predicted genetic performance and phenotype. For the models“RR-BLUP”
and “BL” additional predicted SNP effects are returned. Moreover, the model output of the
used function, i.e., regress or BLR is returned. A summary method is available for objects of
class gpMod. It summarizes the number of observations in the training set and a summary
for the predicted genetic performance of the individuals in the training set. Furthermore, we
provide a predict method for the class gpMod. If all individuals are phenotyped, it returns
the predicted genetic performance of the individuals in the training set. To predict the genetic
performance of unphenotyped individuals with the models “RR-BLUP” or “BL”, an object of
class gpData containing the genotypic data must be passed to the predict method. To predict
unphenotyped individuals with “P-BLUP” or “G-BLUP”, their coefficients of relatedness must
be included in the variance-covariance structure. Alternatively, the argumetn predict=TRUE

in gpMod may be used to predict genotyped but not phenotyped individuals based on marker
data.

Cross-validation

CV for different GP models is implemented in function crossVal. Possible models include
mixed models and Bayesian regression models. To account for population stratification, dif-
ferent sampling strategies may be employed. Thereby in most cases the population structure
will represent families or the age-group in animal breeding. The sampling strategies are

random Random sampling of the complete data set.

within popStruc Each group is splitted into k subsets to investigate within group predictive
ability.

across popStruc The ES and TS contains only complete groups for across group predictive
ability.

The function crossVal returns an object of class cvData. This is a list of predicted genetic
performance and observed phenotypic values for all k · r test sets. Moreover, the list includes
individuals, size, predictive abilities and bias for each corresponding TS.

4.3. Data summary and visualization

In this section we present the different possibilities to visualize objects in the synbreed pack-
age and provide graphical or textual summaries. Thus key features of the high-dimensional
objects can be assessed. For objects of class gpData, the summary method reveals general
information about all elements. This includes the number of genotyped and phenotyped in-
dividuals, summary statistics (0, 25, 50, 75 and 100% quantiles and mean) for the traits,
number of markers, marker genotype frequencies and the summary for the pedigree. The
summary method for an object of class pedigree includes number of individuals, parents and
generations. The summary method for objects of class relationshipMatrix indicates the
dimension, rank, range and number of unique values. The summary method for objects of
class cvData provides information on the employed sampling scheme. Results are summa-
rized by the minimum, mean and maximum of the predictive ability and bias across all test
sets together with an estimated standard error for the mean pooled over the k subsets.

The LD is visualized chromosome-wise. A LD heatmap is available using function LDMap.
This function is a wrapper to apply the function LDheatmap of the package LDheatmap (?)
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for an object of class gpData. The LD must be organized in the matrix-format of function
pairwiseLD. The function LDDist visualizes LD decay as scatterplot or stacked histogram.
This requires the LD organized in the data.frame format. In the stacked histogram, the LD
is visualized with bars representing fractions of SNP pairs. Breaks for the distance and LD
level are controlled by the user. Moreover, a nonlinear regression curve according to ? can
be added to the scatterplot.

A plot method is available for objects of class pedigree and relationshipMatrix. The
pedigree structure is visualized by a directed graph. One line is representing a generation
with a vertex for each individual. Objects of class relationshipMatrix are visualized using
a heatmap representation. Estimated SNP effects of an object of class gpMod can be visualized
using a “Manhattan” plot. This is implemented in function manhattanPlot.

Genome-wide dense marker maps require new types of visualization. The function plotGenMap

provides layouts for small (< 200 markers/chromosome) and high numbers of markers. In
both cases, each chromosome is represented as a vertical bar. The length of the bar is given
by the distance between the first and the last marker on the chromosome. For a sparse map,
each marker is plotted as a horizontal bar. With a dense map, only the marker density is
evaluated within equally-spaced intervals. The bandwidth for the intervals is controlled by
the user. Within each interval, the number of markers is counted and visualized by a color
image. In addition, function summaryGenMap returns a summary of the marker distances. This
includes the number of markers, minimum, mean and maximum distances between markers
by chromosome and over all chromosomes.

5. Examples

5.1. Data sets

In this section, the application of the synbreed package is demonstrated using the data from
the synbreedData package. The synbreedData is included as a dependency in the synbreed

package.

Simulated maize data

This simulated data resembles the output from a typical maize breeding program based on
doubled haploid (DH) lines. A DH is produced by sampling gametes from heterozygous S0
plants. Thus, a DH line received both gametes from a single parent and is fully homozygous.

Ten chromosomes of length 160 cM are simulated. True genetic values are sampled from
K = 500 segregating, biallelic QTL with equal additive effects assuming absence of dominance
and epistasis

gi =
K∑
k=1

QTLik, i = 1, ..., n

where QTLik is the effect of the k-th QTL allele for individual i. Phenotypic values are
simulated by adding a random environmental residual. Thus the underlying genetic model is

yi = gi + ei, i = 1, ..., n
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where ei = N(0, σ2). Genotypic and phenotypic data was simulated for 1250 DH lines.
Moreover, pedigree for additional 360 ancestor individuals is available. These ancestors can
be heterozygous. The 1250 DH lines belong to 25 biparental families with 50 lines in each
family. The maize data can be loaded within the synbreed package using

R> library(synbreed)

R> data(maize)

A basic overview over the contents of the gpData is available through

R> summary(maize)

object of class 'gpData'

covar

No. of individuals 1610

phenotyped 1250

genotyped 1250

pheno

No. of traits: 1

Trait

Min. :120.7

1st Qu.:142.8

Median :148.9

Mean :148.9

3rd Qu.:154.9

Max. :181.8

geno

No. of markers 1117

genotypes 0 1

frequencies 0.339995 0.660005

NA's 0.000 %

map

No. of mapped markers 1117

No. of chromosomes 10

markers per chromosome

1 2 3 4 5 6 7 8 9 10

76 96 99 122 85 106 154 130 121 128

pedigree

Number of

individuals 1610

Par 1 219

Par 2 221

generations 15
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Genotypic data in element geno comprises 1117 polymorphic SNP markers. The distribution
of markers across the chromosomes is visualized in Figure 2(a) using function plotGenMap(maize).
Phenotypic data was simulated for the quantitative trait yield [dt/ha], evaluated in testcrosses
of DH lines in 3 locations. Figure 2(b) shows a histogram of average testcross performance of
the 1250 DH lines.
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Figure 2: Simulated maize data with 1250 DH lines and 1117 polymorphic SNP markers. (a)
Marker map with marker positions in cM and number of markers below chromosome bars.
The plot is created using plotGenMap. (b) Histogram of phenotypic trait values for testcrosses
of DH lines.

Mice data

The mice data set was recently used to illustrate prospects of GP (??). The data is pub-
licly available from http://gscan.well.ox.ac.uk and comprises data of 2527 mice. They
are progenies from eight inbred strains followed by 50 generations of pseudorandom mating.
Original data comprises several qualitative and quantitative traits. See the website or ? for
more details on this data set. The data can be loaded using

R> data("mice")

Genotypic data in element geno consists of 12545 SNP markers. Marker data is available
for a subset of 1940 individuals. The marker map in element map is the sex-averaged genetic
map with distances given in cM. See Figure 3(a) for a visualization of the marker map using
plotGenMap(mice,TRUE,FALSE,ylab="pos [cM]"). Element pheno comprises two quantita-
tive traits for 2527 mice: the body weight at 6 weeks age [g] and growth slope between 6
and 10 weeks age [g/day]. The distribution of both traits is shown in Figure 3(b). Pedigree
information is not yet available from the website. The element covar includes the variables
sex (females=0, males=1), month of birth (1-12), birth year, coat color, cage density and
litter.

http://gscan.well.ox.ac.uk
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Figure 3: Publicly available mice data. (a) Visualization of the marker map comprising in
total 12545 SNP markers along 19 autosomes and the X-chromosome using plotGenMap. (b)
Histograms for univariate distribution of traits weight and growth slope for 2527 mice and
scatterplots for the bivariate distribution and the correlation coefficient.

Dairy cattle data

This data set contains genotypic, phenotypic, map and pedigree data of 500 bulls. Genotypic
and pedigree data are taken from real cattle data while phenotypes are simulated. The
cattle data was provided by the Animal Breeding and Genetics group of Henner Simianer,
Georg-August-Universität Göttingen. The data can be loaded using

R> data("cattle")

Two quantitative traits are available with simulated heritabilities of 0.41 and 0.66, respec-
tively. The distribution of both traits is shown in Figure 4(b). Genotypic data consists of 7250
biallelic SNP markers for every phenotyped individual with missing data included. SNPs are
mapped across all 29 autosomes. Distances in the SNP map are given in mega bases (Mb). See
Figure 4(a) for a visualization of the marker map using function plotGenMap. The pedigree
information is available at least on parents and grandparents of the phenotyped individuals.

5.2. Data processing and visualization

All data sets are already given as objects of class gpData. Hence the next step is the processing
of the genotypic data in element geno. The maize data includes no missing values. Thus
data processing only involves the recoding of the alleles into the number of copies of the
minor allele. There are only homozygous genotypes. Hence no heterozygous genotype must
be declared and genotypic data is recoded by

R> maizeC <- codeGeno(maize)
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Figure 4: Description of the cattle data. (a) Visualization of the marker map comprising in
total 7250 SNP markers along 29 autosomes using plotGenMap. (b) Histograms for univariate
distribution of traits 1 and 2 for 500 bulls and scatterplots for the bivariate distribution and
the correlation coefficient.

Resulting object maizeC is again of class gpData but with recoded genotypic data. This
information is stored for further analysis as codeGeno sets maizeC$info$codeGeno=TRUE.
When there are heterozygous genotypes, the argument label.heter is required. This is
shown for the mice data, where genotypes are coded by the observed alleles separated by a
slash symbol. A heterozygous genotype is identified whenever the first allele differs from the
second allele. This can be generalized by the function

R> is.heter <- function(x) {

+ substr(x, 1, 1) != substr(x, 3, 3)

+ }

The function is.heter checks for unequal alleles at a locus to identify heterozygous genotypes.
It is passed to the function codeGeno by the argument label.heter.

R> miceC <- codeGeno(mice, label.heter = is.heter)

The function codeGeno enables a preselection of markers and the imputing of missing values.
For the following analysis, we choose a threshold for the MAF of 0.05 and of 0.01 for the
fraction of missing values. All SNPs failing these criteria are discarded from the object of
class gpData. Missing values are sampled from the marginal marker allele distribution. The
corresponding call and verbose output is

R> miceC <- codeGeno(mice, label.heter = is.heter, impute = TRUE,

+ impute.type = "random", maf = 0.05, nmiss = 0.01, verbose = TRUE)
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step 1 : 400 marker(s) removed with > 1 % missing values

step 2 : Recoding alleles

step 2.1: No duplicated markers discarded

step 3d : Random imputing of missing values

approximate run time 17.82 seconds

step 4 : No recoding of alleles necessary after imputation

step 5 : 2148 marker(s) removed with maf < 0.05

step 6 : No duplicated markers discarded

End : 9997 marker(s) remain after the check

Summary of imputation

total number of missing values : 23527

number of random imputations : 23527

Recoding of the cattle data can be performed according to the mice data using argument
label.heter="AB".

In the next step, the pairwise LD for markers on chromosome 1 of maize is computed using the
within-R solution for homozygous genotypes. We choose type="data.frame" and visualize
the LD with the function LDDist.

R> maizeLD <- pairwiseLD(maizeC,chr=1,type="data.frame")

The LD decay for the LD data in the object maizeLD is shown in Figure 5. This plot can be
generated using

R> LDDist(maizeLD,type="p",xlab="dist [cM]",pch=19,col=hsv(alpha=0.075,v=0))

for the scatterplot and

R> LDDist(maizeLD,type="bars",breaks=list(dist=c(0,25,50,75,200),

+ r2=c(1,0.5,0.3,0.2,0.1,0.05,0)),xlab="dist [cM]")

for the stacked histograms with user-specified breaks. The graphical layout is controlled
by specifying additional graphical parameters. The LD for the recoded mice data may be
obtained using the PLINK software invoked by the argument use.plink=TRUE.

5.3. Data analysis

In the following, different coefficients of relatedness are calculated for the individuals. Pedigree-
based coefficients are only inferred for the maize data. All genotyped individuals are DH lines
having an inbreeding coefficient of 1. When using function kin, the special argument DH iden-
tifies DH lines in the data. For a DH line i1, Fi1 = P(X1 ≡ X2) is set to 1 by the algorithm. In
the maize data a variable DH in element covar indicates DH lines. The additive relationship
matrix for all individuals in the pedigree is computed by

R> A <- kin(maize,ret="add",DH=maize$covar$DH)

The additive relationship matrix for the general case is obtained by omitting the argument
DH. A summary of the relationship matrix is obtained by
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Figure 5: LD decay as a scatter plot (left side) and stacked histogram (right side) for 76
markers on the first chromosome for the maize data.

R> summary(A)

dimension 1610 x 1610

rank 1460

range of off-diagonal values 0 -- 1.757812

mean off-diagonal values 0.6907328

range of diagonal values 1 -- 2

mean diagonal values 1.891466

number of unique values 1435

Genomic relationship coefficients can be computed using the recoded marker matrix.

R> U <- kin(maizeC,ret="realized")

R> summary(U)

dimension 1250 x 1250

rank 1108

range of off-diagonal values -0.8803719 -- 2.10971

mean off-diagonal values -0.001601281

range of diagonal values 1.467 -- 2.964

mean diagonal values 2

number of unique values 685017

Resulting matrix U is the genome-based analogon for A. The difference in expected and realized
relationship matrices can be visualized using the heatmap visualization, see Figure 6. Note
that only the 1250 genotyped individuals in A instead of all 1610 individuals are presented.
Hence expected and realized relationship can be compared directly. The individuals were
selected using the column genotyped in element covar to query only rows and columns in A

for genotyped individuals.
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R> plot(A[maize$covar$genotyped,maize$covar$genotyped])

R> plot(U)

The DH lines in the maize data are sorted by their family number. Thus the heatmap in
Figure 6(a) is structured as 25×25 squares. Pedigree-based coefficients indicate no difference
within families but differ across families. In contrast, the marker-based relationship reveals
random Mendelian sampling effects within families. Thus, the heatmap provides a higher
resolution for the coefficients.

(a) Pedigree-based relationship (b) Marker-based relationship

Figure 6: Comparison of pedigree-based (expected) relationship matrix and marker-based
(realized) relationship for the 1250 genotyped individuals in maize data. Visualized are the
heatmaps of pairwise relationship coefficients.

5.4. Statistical models

In this section, we fit statistical models to predict genetic values for the individuals in the
mice and maize data. Model performance is assessed by cross-validation.

For the mice data, model “G-BLUP” is fitted for the trait weight. The model includes a
random genetic effect and the population mean µ as fixed effect. The covariance structure for
the genetic values is given by the realized relationship matrix. This is obtained by

R> UM <- kin(miceC,ret="realized")

The model is fitted using the function gpMod

R> miceGBLUP <- gpMod(miceC,model="BLUP",kin=UM,trait="weight")

The resulting object miceGBLUP is of class gpMod. A summary of the model fit is obtained by

R> summary(miceGBLUP)
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Object of class 'gpMod'

Model used: BLUP

Nr. observations 1928

Genetic performances:

Min. 1st Qu. Median Mean 3rd Qu. Max

-4.72400 -1.01600 -0.09459 -0.01184 0.96120 5.17200

--

Model fit

Likelihood kernel: K = (Intercept)

Maximized log likelihood with kernel K is -3178.055

Linear Coefficients:

Estimate Std. Error

(Intercept) 20.344 0.065

Variance Coefficients:

Estimate Std. Error

kinTS 3.704 0.498

In 8.069 0.311

Estimates for the SNP effect may be obtained using “RR-BLUP” through

R> miceRRBLUP <- gpMod(miceC,model="BLUP",kin=UM,trait="weight",markerEffects=TRUE)

Note that in this case the variance components pertaining to model (4), i.e. σ2m rather than
σ2u is reported. The model “RR-BLUP” uses marker-homogenous shrinkage. As a contrasting
model, “BL” is employed which uses marker-specific shrinkage. Values for the prior distribu-
tion of σ2 and λ are determined using the equations of ?.

R> prior <- list(varE = list(df = 3, S = 40), lambda = list(shape = 0.8,

+ rate = 1e-04, value = 52, type = "random"))

R> miceModBL <- gpMod(miceC,model="BL",trait="weight",

+ prior=prior,nIter=12000,burnIn=2000,thin=10)

A summary of the model fit may be obtained using

R> summary(miceModBL)

Object of class 'gpMod'

Model used: BL

Nr. observations 2511

Genetic performances:

Min. 1st Qu. Median Mean 3rd Qu. Max

15.61 19.33 20.25 20.33 21.31 25.54

--



Valentin Wimmer, Theresa Albrecht, Hans-Jürgen Auinger, Chris-Carolin Schön 23

Model fit

MCMC options: nIter = 12000, burnIn = 2000, thin = 10

Posterior mean

(Intercept) 18.91775

VarE 8.116326

lambda 128.6805

The summary reveals only marginal differences compared to the mixed model “G-BLUP”. A
“Manhattan” plot of the predicted marker effects is shown in Figure 7.
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Figure 7: Predicted SNP effects |m̂| for the trait weight in mice data using “BL”.

The estimated SNP effects of “BL” are used to predict the genetic performance of the 12
individuals with a missing value for weight. First, a new object of class gpData is created
including the marker genotypes of the individuals of the prediction set.

R> unphenotyped <- dimnames(mice$pheno)[[1]][is.na(mice$pheno[,1,])]

R> phenotyped <- mice$covar$id[!mice$covar$id %in% unphenotyped]

R> predSet <- discard.individuals(miceC,phenotyped)

Predictions for the genetic performance are obtained by

R> predict(miceModBL,predSet)

The predictive performance of the mixed model is judged by CV. Here, we use 2-fold CV as
in ?. The splitting into TS and ES is repeated 10 times. Individuals are assigned randomly
to TS and ES. For computational ease, the variance-components are estimated once for the
complete data set and committed to model training in CV. This CV scheme may be employed
using

R> cv.mice <- crossVal(miceC,cov.matrix=list(UM),k=2,Rep=10,Seed=123,

+ sampling="random",varComp=miceGBLUP$fit$sigma,VC.est="commit")

A summary of the CV is obtained by
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Object of class 'cvData'

2 -fold cross validation with 10 replication(s)

Sampling: random

Variance components: committed

Number of random effects: 1

Size of the TS: 964 -- 964

Results:

Min Mean +- pooled SE Max

Predictive ability: 0.2916 0.3697 +- 0.009471 0.4323

Bias (reg. slope) 0.6830 0.9927 +- 0.02621 1.2195

Seed start: 123

Seed replications:

[1] 28758 78831 40898 88302 94047 4557 52811 89242 55144 45662

The mean of the predictive ability is 0.37 using random sampling. ? reported values of 0.25
for across family sampling and 0.67 for within family sampling but of a different subset of the
mice data. Moreover, they included a cage effect in the model.

For the maize data, we compare the predictive ability of the pedigree-based model “P-BLUP”
with the genome-based models “GBLUP” and “BL”. Because phenotypic performance is eval-
uated as testcrosses of DH lines, the relationship matrix must be replaced by the kinship
matrix (?). Thus, relationship matrices are divided by 2. The models are fitted by

R> PBLUP <- gpMod(maizeC, model = "BLUP", kin = A/2)

R> GBLUP <- gpMod(maizeC, model = "BLUP", kin = U/2)

R> prior <- list(varE = list(df = 3, S = 35), lambda = list(shape = 0.52,

+ rate = 1e-04, value = 20, type = "random"))

R> modBL <- gpMod(maizeC, model = "BL", prior = prior, nIter = 6000,

+ burnIn = 1000, thin = 5)

Convergence of the Markov chain for modBL was examined visually. No convergence problems
were observed. The model performance is measured by the predictive ability r(ĝTS ,yTS)
from CV. The accuracy is defined as the correlation of the predicted genetic value with true
breeding values r(g, ĝ) for the whole data set. We use 5-fold CV with 10 replications. The
results are summarized in Table 2. The models using marker data outperform the pedigree-
based model “P-BLUP”. However, the average predictive ability of “BL” using marker-specific
shrinkage is similar compared to “G-BLUP” using marker-homogeneous shrinkage.

5.5. Computation times

A crucial point in GP are computation times. In this section, we evaluate the computational
requirement for the algorithms implemented within the synbreed package. The scaling with
respect to the number of data points can be roughly assessed by a comparison of the maize

and mice data. The number of data points in the marker matrices are 1250 · 1117 ≈ 1.4 · 107

and 1940 · 12545 ≈ 2.4 · 108, respectively. We list in Table 3 the elapsed system times on a
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Model cross-validation r(g, ĝ)
r̄(ĝTS ,yTS) (s.e.) avg. bias (s.e.)

P-BLUP 0.22 (0.002) 1.00 (0.013) 0.587
G-BLUP 0.53 (0.002) 1.00 (0.007) 0.856
BL 0.53 (0.002) 1.01 (0.006) 0.856

Table 2: Comparison of the model performance of pedigree-based mixed model “P-BLUP”,
marker-based mixed model “G-BLUP”, and Bayesian Lasso regression “BL” with respect to
the predictive ability, the prediction bias and the accuracy.

standard PC (Intel Core 2, 2.8 Ghz, 4 GB RAM). To impute with the maize data, a fraction
of 0.444% of the marker genotypes was masked. This corresponds to the number of missing
data points in the marker matrix of the mice data.

Computation Times [sec]
Analysis step Function maize data mice data

Load data load 0.6 9.4
Summary summary.gpData 3.0 6.2
Plot marker map plotGenMap 0.4 0.2
Recoding genotypes codeGeno 5.8 68.3
Imputing genotypes ("random") codeGeno 5.9a 71.9
Imputing genotypes ("Beagle") codeGeno 67.0a 2695.8
Imputing genotypes ("family") codeGeno 9.0a NA
Imputing genotypes ("beagleAfterFamily") codeGeno 67.26a NA
Pairwise LD (only Chr. 1) pairwiseLD(,chr=1) 2.4 679.7
Pedigree-based relationship kin(,ret="add") 137.8 NA
Marker-based relationship kin(,ret="realized") 1.2 47.2

Table 3: Elapsed system times (seconds) for the analysis steps using the synbreed package.
a after randomly masking 0.444% values, NA=computation not possible because no pedigree
is available.

We observed, that the computation times for many algorithms scale linearly with the number
of data points. For a 50k SNP chip and 1000 individuals the recoding of the alleles is per-
formed in less than 5 minutes on a standard PC. The marker-based matrix is computed within
the same time frame. The model “G-BLUP” can be fitted in less than a minute. Hence, pre-
dictions for the genetic value are available in only a few minutes. However, additional analysis
steps such as CV - depending on the number of splits and replications - are computation-
ally intensive. Imputing of missing values using Beagle is very accurate but slow for a dense
genome-wide marker map. For a family-stratified population of homozygous inbred lines the
"family" algorithm is a faster alternative.

6. Conclusions and future work

The package synbreed provides a valuable tool within the plant and animal genetics re-
searchers software toolbox. It offers a comprehensive collection of methods required in the
analysis of GP data. The data flow is guided by a single, unified data object. Once an ob-
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ject of class gpData is created, all analysis steps rely on its structure. Moreover, it is very
convenient to share objects of class gpData. A key issue is the generality of the class gpData.
We minimized the requirements concerning the data structure. This includes replicated and
unreplicated trials for phenotypic data as well as arbitrary coding of marker data either by
alleles or marker genotypes. Consequently, the package can also be applied in GWAS or QTL
studies. For the latter, we included a gateway to the package qtl. The synbreed package is
implemented as generic as possible. Hence, the package is suitable for both plant and animal
genetics researchers and not limited to any species. We have successfully tested this frame-
work for the analysis of several scenarios with simulated and experimental data from different
species (maize, rye, dairy cattle, rice and Arabidopsis).

Next generation genetics research involves computer-intensive methods to analyze massive
amounts of high-throughput genotyping and large scale phenotyping data. Especially in the
plant breeding community, there is a strong demand for robust standard software. We de-
signed this package to provide access to standard methods required in GP. The synbreed
package provides an interface to fit robust standard parametric GP models being publicly
available. This allows researchers to conduct standard analyses, e.g., using mixed models.
Moreover, the framework of R enhances the analysis and visualization of results in one soft-
ware. All code is given in the R language. This permits the users to customize the methods
to specific needs. When necessary, we provide gateways to standard software such as Beagle
or Plink. Beside research and routine analysis, the package is also useful in the education of
young scientists and breeders. It provides fast access to a wide range of different analysis
methods and a hand-on tutorial with example data sets. Most functions have default val-
ues and short argument lists. Thus graduate students can gain expeditious insight into the
statistical models and apply GP methods without having profound programing skills.

One objective of the synbreed package was to create a gateway to related software programs.
Thereby we utilize the strength of R to integrate functions by the package structure. We pro-
vide an interface to fit GP models using the mixed and Bayesian regression models. The model
performance can be investigated using cross-validation. The function gpData2data.frame al-
lows the conversion to a data.frame. This comprehensive format can be used by many other
R functions. Other software packages such as ASReml or WOMBAT are frequently used in
genetics and breeding research. An object of class relationship matrix can be stored as
a file using function write.relationshipMatrix which meets the required formats for AS-
Reml or WOMBAT. Thus data in synbreed package can be used straightforward by other
software. Moreover, we included functions to prepare the input files for the programs Beagle
and Plink. We provide an interface to use the methods therein for objects of class gpData.
Combining the functionality of R with Sweave (?) and LATEX enables to create automatic re-
ports presenting results for e.g., predicted genetic performance and SNP effects within tables
and graphics. This is a step towards automatized analysis pipelines in the analysis of next
generation genotype and phenotype data.

There is no universal constraint in the synbreed package with respect to the number of
data points. Rather computational facilities impose limitations. Table 3 gives an overview
of computation times for both data sets. Various analysis steps are performed in seconds.
In general, the elapsed time increases linearly with respect to the number of data points.
However, as data output from next generation sequence technology is emerging faster than
computational capacities, additional effort is required to improve the algorithms. The open-
source structure of R allows the user to customize the algorithms. Solutions can be the
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use of parallel computing utilizing the power of multi-core systems (?). Hence, computation
times are likely to be reduced by an order of magnitude, especially on a multi-core cluster.
The claimed workspace can be reduced by using sparse matrix methods (e.g., R package ff,
?). The current version of the package enables genotype-based analyses. However, using
haplotypes is desirable, too. For the future, we are aiming to include an additional data
object for haplotypes and provide tools to analyze them. As available amount of data points
are expected to increase, future work will also include the embedding of foreign languages,
i.e., C.
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