tests/testthat/test-mexDependence.R

context("mexDependence")

test_that("mexDependence behaves as it should", {
  skip_on_cran()
  skip_on_travis()
  smarmod <- migpd(summer, mqu=c(.9, .7, .7, .85, .7), penalty="none")
  wmarmod <- migpd(winter, mqu=.7,  penalty="none")

  mySdepO3 <- mexDependence(smarmod,which=1,dqu=0.7,margins="gumbel",constrain=FALSE)
  myWdepO3 <- mexDependence(wmarmod,which=1,dqu=0.7,margins="gumbel",constrain=FALSE)

  mySdepNO2 <- mexDependence(smarmod,which=2,dqu=0.7,margins="gumbel",constrain=FALSE)
  myWdepNO2 <- mexDependence(wmarmod,which=2,dqu=0.7,margins="gumbel",constrain=FALSE)

  mySdepNO <- mexDependence(smarmod,which=3,dqu=0.7,margins="gumbel",constrain=FALSE)
  myWdepNO <- mexDependence(wmarmod,which=3,dqu=0.7,margins="gumbel",constrain=FALSE)

  mySdepSO2 <- mexDependence(smarmod,which=4,dqu=0.7,margins="gumbel",constrain=FALSE)
  myWdepSO2 <- mexDependence(wmarmod,which=4,dqu=0.7,margins="gumbel",constrain=FALSE)

  mySdepPM10 <- mexDependence(smarmod,which=5,dqu=0.7,margins="gumbel",constrain=FALSE)
  myWdepPM10 <- mexDependence(wmarmod,which=5,dqu=0.7,margins="gumbel",constrain=FALSE)


  jhSdepO3 <- matrix(c(
    0.56627103,  0.37272912, 0.0000000, 0.0000000,
    0.22029334,  0.36865296, 0.0000000, 0.0000000,
    0.28193999, -0.26731823, 0.0000000, 0.0000000,
    0.46293139, -0.23387868, 0.0000000, 0.0000000),byrow=FALSE,nrow=4)

  jhSdepNO2 <- matrix(c(
    0.49290567,  0.22236302, 0.0000000, 0.0000000,
    0.38571246,  0.34379705, 0.0000000, 0.0000000,
    0.22026515, -0.17494068, 0.0000000, 0.0000000,
    0.45455612,  0.22411795, 0.0000000, 0.0000000),byrow=FALSE,nrow=4)

  jhSdepNO <- matrix(c(
    0.43149222,  0.34033851, 0.0000000, 0.0000000,
    0.49992799,  0.21878814, 0.0000000, 0.0000000,
    0.19724402,  0.23839660, 0.0000000, 0.0000000,
    0.50384850,  0.18227312, 0.0000000, 0.0000000),byrow=FALSE,nrow=4)

  jhSdepSO2 <- matrix(c(
    0.24400046, -0.02162792, 0.0000000, 0.0000000,
    0.08769596, -0.14758165, 0.0000000, 0.0000000,
    0.00000000, -0.04461209, 0.6865857, 0.4201682,
    0.35364948,  0.02338747, 0.0000000, 0.0000000), byrow=FALSE,nrow=4)

  jhSdepPM10 <- matrix(c(
    0.08302144,  0.16604598, 0.0000000, 0.0000000,
    0.00000000,  0.57387887, 0.0000000, 0.0000000,
    0.15208086,  0.32264497, 0.0000000, 0.0000000,
    0.00000000,  0.43255493, 0.0000000, 0.0000000), byrow=FALSE,nrow=4)



  jhWdepO3 <- matrix(c(
    0.00000000,  0.008072046,  0.00000000, 0.0000000,
    0.00000000,  0.034283871,  0.00000000, 0.0000000,
    0.00000000, -0.188517544,  5.14775893, 1.0000000,
    0.00000000, -0.026874734,  0.05011460, 0.1075632),byrow=FALSE,nrow=4)

  jhWdepNO2 <- matrix(c(
    0.00000000, -0.553608371, -0.06047238, 0.4967213,
    0.81920276,  0.529272235,  0.00000000, 0.0000000,
    0.32246150,  0.335335739,  0.00000000, 0.0000000,
    0.85746906,  0.085265792,  0.00000000, 0.0000000),byrow=FALSE,nrow=4)

  jhWdepNO <- matrix(c(
    0.00000000, -0.504344703, -1.41890419, 0.0000000,
    0.75819233,  0.378119827,  0.00000000, 0.0000000,
    0.32199902, -0.350339706,  0.00000000, 0.0000000,
    0.73227271, -0.105822435,  0.00000000, 0.0000000),byrow=FALSE,nrow=4)

  jhWdepSO2 <- matrix(c(
    0.00000000, -0.485253436, -1.27253412, 0.0000000,
    0.00000000, -0.018577905,  0.63501876, 0.3862878,
    0.00000000,  0.000000000,  0.76856266, 0.4916768,
    0.03626605, -0.316472032,  0.00000000, 0.0000000),byrow=FALSE,nrow=4)

  jhWdepPM10 <- matrix(c(
    0.00000000,  0.064075145,  0.00000000, 0.0000000,
    0.86288696,  0.584629421,  0.00000000, 0.0000000,
    0.59510081,  0.569002154,  0.00000000, 0.0000000,
    0.10412199,  0.207529741,  0.00000000, 0.0000000),byrow=FALSE,nrow=4)

  tol <- 0.23
  if(FALSE){
    par(mfrow=c(2,5))
    plot(jhWdepO3,  myWdepO3$dependence$coefficients);abline(0,1)
    plot(jhWdepNO2, myWdepNO2$dependence$coefficients);abline(0,1)
    plot(jhWdepNO,  myWdepNO$dependence$coefficients);abline(0,1)
    plot(jhWdepSO2, myWdepSO2$dependence$coefficients);abline(0,1)
    plot(jhWdepPM10, myWdepPM10$dependence$coefficients);abline(0,1)

    plot(jhSdepO3,  mySdepO3$dependence$coefficients);abline(0,1)
    plot(jhSdepNO2, mySdepNO2$dependence$coefficients);abline(0,1)
    plot(jhSdepNO,  mySdepNO$dependence$coefficients);abline(0,1)
    plot(jhSdepSO2, mySdepSO2$dependence$coefficients);abline(0,1)
    plot(jhSdepPM10, mySdepPM10$dependence$coefficients);abline(0,1)
  }

  expect_that(c(jhWdepO3), equals(c(myWdepO3$dependence$coefficients[1:4, ]), tolerance=tol), label="mexDependence:WinterO3")
  expect_that(c(jhWdepNO2), equals(c(myWdepNO2$dependence$coefficients[1:4, ]), tolerance=tol),label="mexDependence:WinterNO2")
  expect_that(c(jhWdepNO), equals(c(myWdepNO$dependence$coefficients[1:4, ]), tolerance=tol),label="mexDependence:WinterNO")
  expect_that(c(jhWdepSO2), equals(c(myWdepSO2$dependence$coefficients[1:4, ]), tolerance=tol),label="mexDependence:WinterSO2")
  expect_that(c(jhWdepPM10), equals(c(myWdepPM10$dependence$coefficients[1:4, ]), tolerance=tol),label="mexDependence:WinterPM10")

  expect_that(c(jhSdepO3), equals(c(mySdepO3$dependence$coefficients[1:4, ]), tolerance=tol),label="mexDependence:SummerO3")
  expect_that(c(jhSdepNO2), equals(c(mySdepNO2$dependence$coefficients[1:4, ]), tolerance=tol),label="mexDependence:SummerNO2")
  expect_that(c(jhSdepNO), equals(c(mySdepNO$dependence$coefficients[1:4, ]), tolerance=tol),label="mexDependence:SummerNO")
  expect_that(c(jhSdepSO2), equals(c(mySdepSO2$dependence$coefficients[1:4, ]), tolerance=tol),label="mexDependence:SummerSO2")
  expect_that(c(jhSdepPM10), equals(c(mySdepPM10$dependence$coefficients[1:4, ]), tolerance=tol),label="mexDependence:SummerPM10")

  # test marginal transformations original to Gumbel and reverse

  p.x <- runif(50)
  q.x <- -log(-log(p.x))
  expect_that(mySdepO3$dependence$margins[[1]], matches("gumbel"),label="mexDependence: gumbel marginal name")
  expect_that(mySdepO3$dependence$margins$p2q(p.x), equals(q.x), label="mexDependence: gumbel marginal transform p2q")
  expect_that(mySdepO3$dependence$margins$q2p(q.x), equals(p.x), label="mexDependence: gumbel marginal transform q2p")

  # test functionality with 2-d data

  wavesurge.fit <- migpd(wavesurge,mqu=.8)
  dqu <- 0.8
  which <- 1
  wavesurge.mex <- mexDependence(wavesurge.fit,which=which,dqu=dqu)
  op <- options(warn=-1) # since want it to throw a warning but still executre correctly, which is what is tested
  wavesurge.dep <- mexDependence(wavesurge.fit,which=which)
  options(op)

  expect_that(wavesurge.mex[1:2], equals(wavesurge.dep[1:2]), label="mexDependence:missingdquargument")
  expect_that(dim(wavesurge.mex$dependence$Z), equals(c(578, 1)), label="mexDependence:executionfor2-ddata")
  expect_that(wavesurge.mex$dependence$dqu, equals(dqu), label="mexDependence:executionfor2-ddata")
  expect_that(wavesurge.mex$dependence$which, equals(which), label="mexDependence:executionfor2-ddata")

  # test specification of starting values

  which <- 2
  dqu <- 0.8
  summer.fit <- migpd(summer, mqu=c(.9, .7, .7, .85, .7), penalty="none")
  summer.mex1 <- mexDependence(summer.fit,which=which,dqu=dqu)
  summer.mex2 <- mexDependence(summer.fit,which=which,dqu=dqu,start=summer.mex1)
  summer.mex3 <- mexDependence(summer.fit,which=which,dqu=dqu,start=summer.mex1$dependence$coefficients[1:2,])
  summer.mex4 <- mexDependence(summer.fit,which=which,dqu=dqu,start=c(0.01,0.03))

  tol <- 0.005
  expect_that(summer.mex1$dependence$coefficients, equals(summer.mex2$dependence$coefficients, tolerance=tol),
              label="mexDependence:summerstartingvalues:class(start)='mex'")
  expect_that(summer.mex1$dependence$coefficients, equals(summer.mex3$dependence$coefficients, tolerance=tol),
              label="mexDependence:summerstartingvalues:start=matrix")
  expect_that(summer.mex1$dependence$coefficients, equals(summer.mex4$dependence$coefficients, tolerance=tol),
              label="mexDependence:summerstartingvalues:start=vector")

  # test marginal transformations original to Laplace and reverse

  p.x <- runif(50)
  q.x <- ifelse(p.x < 0.5,log(2*p.x),-log(2*(1-p.x)))
  expect_that(summer.mex1$dependence$margins[[1]], matches("laplace"),label="mexDependence: laplace marginal name")
  expect_that(summer.mex1$dependence$margins$p2q(p.x), equals(q.x), label="mexDependence: laplace marginal transform p2q")
  expect_that(summer.mex1$dependence$margins$q2p(q.x), equals(p.x), label="mexDependence: laplace marginal transform q2p")


  # test laplace constrained estimation against independent coding of implementation by Yiannis Papastathopoulos (see test.functions.R file)
  # do all the possible pairs generated by the winter data set.  This covers negative and positive dependence with cases on and off the boundary.

  set.seed(20111010)
  pairs <- expand.grid(1:5,1:5)
  pairs <- as.matrix(pairs[pairs[,1] != pairs[,2], 2:1])
  margins <- summer.mex1$dependence$margins # mexTransform needs list containing "laplace", p2q and q2p transforms
  marTransform <- c("mixture","empirical")
  Dthresh <- c(1,2,2.5)
  Mquant <- 0.7
  v <- 10
  k <- 5

  for(marTrans in marTransform){
    for(dth in Dthresh){
      HTSest <- KTPest <- matrix(0,ncol=2,nrow=dim(pairs)[1])

      for(i in 1:dim(pairs)[1]){
        mar.model <- migpd(winter[,pairs[i,]], mqu=Mquant,penalty="none")
        mar.trans <- mexTransform(mar.model, margins=margins, method=marTrans)
        X <- list(mar.trans$transformed)
        Dqu <- 1 - mean(mar.trans$transformed[,1] > dth)
        init <- initial_posneg(D=1, listdata=X, u=dth, v=v)
        a <- estimate_HT_KPT_joint_posneg_nm(pars=init, x=dth,listr=X,params=FALSE,k=k,v=v)
        KTPest[i,] <- a$par
        b <- mexDependence(mar.trans,which=1,dqu=Dqu,margins=margins[[1]],constrain=TRUE,v=v,
                           marTransform=marTrans,start=init,nOptim=k)
        HTSest[i,] <- coef(b)$dependence[1:2]
      }

      expect_that(KTPest, equals(HTSest, tolerance=tol), label=paste("mexDependence:constrainedestimationthreshold",i))
    }
  }
}
)

Try the texmex package in your browser

Any scripts or data that you put into this service are public.

texmex documentation built on May 2, 2019, 5:41 a.m.