
Using the textreg package
Miratrix

2018-10-04

Introduction

The following document illustrates the textreg package on a cut down version of the “Fat/Cat” database
discussed in Miratrix & Ackerman (2014). In a nutshell, the textreg package allows for regressing a vector of
+1/-1 labels onto raw text. The textreg package takes care of converting the text to all of the possible related
features, allowing you to think of the more organic statement of regressing onto “text” in some broad sense.

Installing the textreg package

The easiest way is to use CRAN. If not, first install the Rcpp and tm packages. The first connects C++ to R
in a nicer way than the default, and the second is a text manipulation package of great utility. You will also
need a C++ compiler that R can access. We don’t know how to advise you to get that if it is not already
installed.

Once you have your compiler, you might try, if you have the package as a file on your system:
install.packages("textreg_0.1.tar.gz", repos = NULL, type="source")

You can also install via CRAN.

Getting ready to regress

To get started, load the package and the data. Here we use a small dataset that comes with the package.
library(textreg)
library(tm)
data(bathtub)
bathtub

<<VCorpus>>
Metadata: corpus specific: 0, document level (indexed): 1
Content: documents: 127

Notice it is a tm package Corpus object. (Right now textreg really requires vector corpus objects, because
it is going to convert everything to raw character strings before conducting the regression.)

Next obtain some labeling.
Labeling is any list of +1 and -1 (or 0 if you want to drop a document). Here it has been stored in meta data
of the sample corpus, and we pull it out:
mth.lab = meta(bathtub)$meth.chl
table(mth.lab)

mth.lab
-1 1
110 17

Now decide on what ban words you want to use. Usually non-informative content-specific words should be
dropped. Here we drop the words associated with making the labeling in the first place:

1

banwords = c("methylene", "chloride")

Ban words are words in the text you wish to disallow from any summary generated.
This is in liu of classic “stop-word” lists; they are situation-dependent. Classic stop words are automatically
removed by appropriate regularization in the regression. There is no need to include them here.

Obtaining the Summary

You get a summary by calling the textreg function. It has a lot of parameters, but let’s ignore them for now.
rs = textreg(bathtub, mth.lab, C=4, gap=1, min.support = 1,

verbosity=0, convergence.threshold=0.00001, maxIter=100)
rs

textreg Results
C = 4 a = 1 Lq = 2
min support = 1 phrase range = 1-100 with up to 1 gaps.
itrs: 100 / 100
##
Banned phrases: ''
##
Label count:
-1 1
110 17
##
Final model:
ngram beta Z support totalDocs posCount negCount
intercept -0.85214149 1.000000 127 127 17 110
asphyxiation * 0.17585215 1.414214 2 2 2 0
chloride 0.08742998 15.264338 41 17 17 0
chloride vapors 0.14831443 1.732051 3 3 3 0
contained methylene 0.57235549 2.000000 4 4 4 0
paint 0.36249761 7.280110 21 12 9 3
respiratory 0.39639694 2.828427 6 5 5 0
stripper * 1.83882158 4.898979 14 10 10 0
stripping 1.31235282 3.316625 9 8 7 1
to methylene 1.05297500 2.449490 6 6 6 0
vapors * heavier 0.03995044 1.414214 2 2 2 0

One diagnostic to always check is whether there was convergence. If the number of iterations equals maxIter,
it is likely there was no convergence. Try upping maxIter or relaxing your convergence threshold.

Note, you can also just pass a filename instead of the corpus as the first parameter. This is good if the file is
very large and you don’t want to load it into R. The file needs to be one document per line of the file (so you
will need to removed newlines, etc., from your documents in order to have made such a file).

You can also print the results in a more easy-to-read form:
print(reformat.textreg.model(rs), row.names=FALSE)

phrase num.phrase num.reports num.tag per.tag per.phrase
intercept 127 127 17 13 100
chloride 41 17 17 100 100
stripper * 14 10 10 100 59
paint 21 12 9 75 53
stripping 9 8 7 88 41

2

to methylene 6 6 6 100 35
respiratory 6 5 5 100 29
contained methylene 4 4 4 100 24
chloride vapors 3 3 3 100 18
asphyxiation * 2 2 2 100 12
vapors * heavier 2 2 2 100 12

You can plot to see when phrases were introduced in the greedy coordinate descent.
plot(rs)

0 10 20 30 40 50

−
1

0
1

2
3

4
5

6

step

be
ta

intercept
stripper *
stripping
respiratory
to methylene
contained methylene
paint
vapors * heavier
asphyxiation *
chloride vapors
chloride

This is simply a call to the provided path.matrix.chart method which uses make.path.matrix which is a
matrix of all the coeficients for each step of the descent algorithm.

Tuning the Summary

There are several knobs that you can twiddle to change the summary you get from textreg(). The main
ones to consider are

C The level of regularization. Bigger values give shorter summaries as it is harder for a phrase to be selected.
Small values give longer summaries, and with C too small, you get phrases that are likely there due to
random chance.

Lq The q for the Lq-rescaling of terms. Anything above 10 is treated as infinity. Bigger values means select
more general phrases. Smaller values means select less general ones. 2 is standard.

positive.only Set this to TRUE or FALSE. Only allow positive features (other than the intercept). Useful
if there are few positive documents and many negative, baseline, documents.

binary.features Set this to TRUE or FALSE. When TRUE, the feature vectors are changed to 0-1 vectors
indicating whether a phrase is in or not in any given document, as compared to vectors of counts of
how many times a phrases in a document. These feature vectors are regularized regardless.

3

min.support Phrases that do not appear this many times are not considered viable features. Increasing
this number can substantially decrease the running time of the algorithm, but it will force the dropping
of very rare phrases regardless of regularization choice. If you don’t want to see very rare phrases, this
is a good option (even if it is a bit ad hoc).

min.pattern, max.pattern Minimum and maximum lengths (in words) for phrases that are considered.

gap Number of words that can appear in a gap. A phrase can have multiple gaps of this length. So gap=2
would allow, e.g., “the * * truck” as a phrase. For gap=1 “the * truck * slowed” could be a phrase,
because the skips are not adjacent.

Here are some different models we might fit:
rs5 = textreg(bathtub, mth.lab, banwords, C = 5, gap=1, min.support = 1,

verbosity=0, convergence.threshold=0.00001, maxIter=100)
rsLq5 = textreg(bathtub, mth.lab, banwords, C = 3, Lq=5, gap=1, min.support = 1,

verbosity=0, convergence.threshold=0.00001, maxIter=100)
rsMinSup10 = textreg(bathtub, mth.lab, banwords, C = 3, Lq=5, gap=1, min.support = 10,

verbosity=0, positive.only=TRUE, convergence.threshold=0.00001, maxIter=100)
rsMinPat2 = textreg(bathtub, mth.lab, banwords, C = 3, Lq=5, gap=1, min.support = 1,

min.pattern=2, verbosity=0, convergence.threshold=0.00001, maxIter=100)

We can merge lists to see overlap quite easily via the make.list.table command. This gives a table that
we can easily render in latex:
library(xtable)
lst = list(rs5, rsLq5, rsMinSup10, rsMinPat2)
names(lst) = c("C=5", "Lq=5","sup=10", "pat=2")
tbl = make.list.table(lst, topic="Misc Models")
print(xtable(tbl, caption="Table from the make.list.table call"),

latex.environments="tiny")

% latex table generated in R 3.5.1 by xtable 1.8-2 package % Thu Oct 4 06:07:08 2018

phrase C=5 Lq=5 sup=10 pat=2 num.phrase num.reports num.tag per.tag per.phrase
1 stripper * 5.00 12.00 11.00 11.00 14 10 10 100.00 59.00
2 stripping 4.00 10.00 9 8 7 88.00 41.00
3 respiratory 3.00 8.00 6 5 5 100.00 29.00
4 paint 2.00 9.00 21 12 9 75.00 53.00
5 contained 1.00 5.00 10.00 15 13 10 77.00 59.00
6 february X 14.00 12.00 2 2 2 100.00 12.00
7 vapors * heavier 13.00 10.00 2 2 2 100.00 12.00
8 was * and * a 11.00 14.00 2 2 2 100.00 12.00
9 due 9.00 7 7 5 71.00 29.00
10 a * stripper 7.00 7.00 4 4 4 100.00 24.00
11 a bathtub 6.00 2.00 9 9 5 56.00 29.00
12 using 4.00 7.00 22 22 9 41.00 53.00
13 was * wearing 3.00 5.00 7 7 5 71.00 29.00
14 floor 2.00 8.00 20 16 4 25.00 24.00
15 on the * floor 1.00 4.00 3 3 2 67.00 12.00
16 tub 6.00 20 8 5 62.00 29.00
17 death 5.00 10 9 5 56.00 29.00
18 died 4.00 17 17 7 41.00 41.00
19 an employee 3.00 19 19 4 21.00 24.00
20 medical 2.00 29 25 8 32.00 47.00
21 no 1.00 17 16 5 31.00 29.00
22 that contained 9.00 3 3 3 100.00 18.00
23 the cause 8.00 4 4 4 100.00 24.00
24 due to * 6.00 6 6 4 67.00 24.00
25 a stripping 3.00 2 2 2 100.00 12.00
26 using * 1.00 21 21 8 38.00 47.00

Table 1: Table from the make.list.table call

See latex table for results.

You can also plot this side-by-side table
list.table.chart(tbl)

4

Word Appearance for Misc Models
(Method: rank)

C
=

5

Lq
=

5

su
p=

10

pa
t=

2

using *

a stripping

due to *

the cause

that contained

no

medical

an employee

died

death

tub

on the * floor

floor

was * wearing

using

a bathtub

a * stripper

due

was * and * a

vapors * heavier

february X

contained

paint

respiratory

stripping

stripper *

Selecting C

C is the main tuning parameter for a regularized regression. In the above we just used a default C = 4, which
is just large enough to drop singleton phrases that are “perfect predictors.” Better choices are possible. One
way is to select one via obtaining a permutation distribution on this parameter under a null of no connection
between text and labeling. Do so as follows:
Cs = find.threshold.C(bathtub, mth.lab, banwords, R = 100, gap=1, min.support = 5,

verbosity=0, convergence.threshold=0.00001)

Cs[1]

[1] 9.900829
summary(Cs[-1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.142 4.846 5.220 5.294 5.941 6.853
C = quantile(Cs, 0.95)
C

95%
6.23492

5

The Cs[1] term gives you the penalty needed to get no selected phrases (a null model) on your original labeling.
If this is much larger than the permutation distribution, you know you have a real connection between the
text and the labeling, even after dropping banned words and phrases outside the specified support.

Important:

The find.threshold.C function shares the parameters of the textreg function.
By using the same parameters in both calls, you will find the appropriate null distribution given the phrases
allowed by the other parameters such as min.pattern and so forth.

Dropping documents

You can drop documents from the regression by setting the corresponding label to 0 instead of +1 or -1. For
example
mth.lab.lit = mth.lab
mth.lab.lit[20:length(mth.lab)] = 0

rs.lit = textreg(bathtub, mth.lab.lit, banwords, C = 4, gap=1, min.support = 1, verbosity=0)
rs.lit

textreg Results
C = 4 a = 1 Lq = 2
min support = 1 phrase range = 1-100 with up to 1 gaps.
itrs: 17 / 40
##
Banned phrases: 'methylene', 'chloride'
##
Label count:
-1 1
11 8
##
Final model:
ngram beta Z support totalDocs posCount negCount
intercept -0.2933007 1.000000 19 19 8 11
contained 0.2588484 2.645751 7 7 6 1
stripper 0.5935733 2.236068 5 5 5 0
stripping 0.2643281 2.828427 6 5 5 0
rs.lit$labeling

[1] -1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 1

Note how we can get the subset labeling from the textreg.result object. This can be useful for some of
the text exploratory calls that take a result object and a labeling.

Exploring the Text

The textreg package also offers a variety of ways to explore your text.
Some of these methods work with objects returned from the textreg() command, and some just extend the
capability of the tm package and are generally useful.

6

Finding Where Phrases Appear

It is easy to see which selected features are in which positive documents by generating the phrase matrix''
which is effectively the design matrix of the regression (with all unimportant columns
dropped). Here we look at the phrase matrix for the full bathtub regression, above, and
the one limited to the subset in theDropping Documents” section, above.
hits = phrase.matrix(rs)
dim(hits)

[1] 127 11
t(hits[1:10,])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
intercept 1 1 1 1 1 1 1 1 1 1
asphyxiation * 0 0 0 0 0 1 0 0 0 0
chloride 0 0 4 0 3 1 0 0 0 0
chloride vapors 0 0 0 0 1 0 0 0 0 0
contained methylene 0 0 0 0 0 0 0 0 0 0
paint 0 0 5 0 1 2 1 0 0 2
respiratory 0 0 2 0 1 0 0 0 0 0
stripper * 0 0 0 0 1 1 0 0 0 0
stripping 0 0 0 0 1 0 0 0 0 0
to methylene 0 0 1 0 0 0 0 0 0 0
vapors * heavier 0 0 0 0 0 0 0 0 0 0
hits.lit = phrase.matrix(rs.lit)
dim(hits.lit)

[1] 19 4

Note the transpose, above, making the rows the phrases and the columns documents. This is just for ease of
printing.

Also note that, in the rs.lit case, since documents were dropped by the labeling, this method will also drop
them from the phrase matrix. (See above about dropping documents.)

Once you have your phrase matrix, you can calculate the number of “important” phrases in each document,
or the total number of times a phrase appears (these numbers are already in the result object, however).
apply(hits[mth.lab == 1,], 1, sum)

[1] 13 9 6 6 5 7 5 6 6 3 7 7 6 19 4 5 6
apply(hits[mth.lab == 1,], 2, sum)

intercept asphyxiation * chloride chloride vapors
17 2 41 3
contained methylene paint respiratory stripper *
4 17 6 14
stripping to methylene vapors * heavier
8 6 2

Independent Search Methods

We provide several methods that allow you to directly explore text without a textreg.result object. You
can use these even if you are not using the regression function of this package at all. For example, to look at
the appearance pattern of individual terms try the following:

7

tt2 = phrase.count("tub * a", bathtub)
head(tt2)

1 2 3 4 5 6
0 0 0 0 0 0
table(tt2, dnn="Counts for tub * a")

Counts for tub * a
0 1 3
124 2 1

You can further investigate the appearance patterns for phrases by making a table of which documents have
which phrases.
Again, you can look for any phrases you want using these methods, even if they are not part of your original
CCS summary.
tab = make.phrase.matrix(c("bathtub", "tub * a"), bathtub)
head(tab)

bathtub tub * a
1 1 0
2 1 0
3 1 0
4 1 0
5 1 0
6 2 0
table(tab[,2])

##
0 1 3
124 2 1

Note the tally numbers are the same as above.

You can also just get total counts of the phrases in the corpus.
The only advantage of this is you can check phrases that were not returned in your textreg result object.
ct = make.count.table(c("bathtub", "tub * a", "bath"), mth.lab, bathtub)
ct

n.pos n per.pos per.tag
bathtub 5 16 31 29
tub * a 3 3 100 18
bath 1 2 50 6

Finding Phrases’ Contexts

You can grab snippits of text that include phrases quite easily. For example, here are the first three
appearances of “bathtub”:
tmp = grab.fragments("bathtub", bathtub, char.before=30, char.after=30, clean=TRUE)
tmp[1:3]

$`1`
[1] "teriors inc were installing a BATHTUB surround in the bathroom of a"
##
$`2`

8

[1] "ng down a pallet containing a BATHTUB kit and knocked down a storag"
##
$`3`
[1] "remove the old coating from a BATHTUB the employee was found dead a"

If a document has a phrase multiple times, you will get multiple results for that document.

Here is where “tub * a” comes from, divided into positive and negative classes by the passed labeling:
frags = sample.fragments("tub * a", mth.lab, bathtub, 20, char.before=30, char.after=30)
frags

$`tub * a`
##
Profile of Summary Phrase: 'tub * a'
Positive: 3/17 = 17.65
Negative: 0/110 = 0.00
Appearance of 'tub * a' in positively marked documents:
* working was small with only a TUB AND A toilet the window was kept cl
* ping paint off of a porcelain TUB USING A methylene chloride based stri
* aptistery similar to a sunken TUB USING A push broom and a chemical cal
##
Appearance of 'tub * a' in baseline documents.

Relationships between phrases

Sometimes, especially for summaries of many positive documents, there are multiple aspects that are being
summarized with clusters of phrases. We have two vizualizations that help understand how phrases interact.
%We artificially generate longer summaries (by lowering C) to have more to work with; generally we do not
necessarily advocate using C lower than a found threshold since you open the door to random noise.

The first is a simple clustering of the phrases based on their appearance in the positively marked documents
only. This is only meaningful if the negative, baseline documents are to be construed only as a backdrop.
Clustering is based on a scaled overlap statistic.
cluster.phrases(rs, num.groups=3)

9

ch
lo

rid
e

va
po

rs
 (

3)

va
po

rs
 *

 h
ea

vi
er

 (
2)

co
nt

ai
ne

d
m

et
hy

le
ne

 (
4)

st
rip

pi
ng

 (
7)

pa
in

t (
9)

ch
lo

rid
e

(1
7)

st
rip

pe
r

*
(1

0) as
ph

yx
ia

tio
n

*
(2

)

re
sp

ira
to

ry
 (

5)

to
 m

et
hy

le
ne

 (
6)

Association of Phrases

d

The num.groups parameter is how many clusters to make.

The second vizualization is a heat-map of the pairwise correlations of all selected phrases.
You can plot the number of documents shared by each pair as well.
make.phrase.correlation.chart(rs, count=TRUE, num.groups=3)

ch
lo

rid
e

va
po

rs

va
po

rs
 *

 h
ea

vi
er

co
nt

ai
ne

d
m

et
hy

le
ne

st
rip

pi
ng

pa
in

t

ch
lo

rid
e

st
rip

pe
r

*

as
ph

yx
ia

tio
n

*

re
sp

ira
to

ry

to
 m

et
hy

le
ne

chloride vapors

vapors * heavier

contained methylene

stripping

paint

chloride

stripper *

asphyxiation *

respiratory

to methylene

3 1 1 1 3 2 1 1

1 2 1 1 2 1

1 4 2 2 4 2 1

1 2 7 4 7 4 2 1

1 1 2 4 9 9 7 1 2 3

3 2 4 7 9 17 10 2 5 6

2 1 2 4 7 10 10 1 2 3

1 2 1 2 1

1 1 2 2 5 2 1 5 2

1 1 3 6 3 2 6

The count=TRUE means use raw counts (easier to interpret) rather than the scaled overlap statistic.

10

Prediction

You can use the phrases to predict the labeling both for your original documents or new out-of-sample
documents if you wish. First, you can obtain an overall measure of how well one can predict the labeling
with the phrases:
calc.loss(rs)

tot.loss loss penalty
45.69182 21.74404 23.94779

This might be useful for selecting C based on cross-validated prediction accuracy or similar.

You can also, if you wish, examine the prediction ability of phrases on individual documents.
pds = predict(rs)
labs = rs$labeling
table(labs)

labs
-1 1
110 17
boxplot(pds ~ labs, ylim=c(-1,1))
abline(h=c(-1,1), col="red")

−1 1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Note many of the predictions for positively marked documents remain very negative. This is typical when
there are few positive examples. Also note the lab=rs$labeling line—this will give you the final labeling
used by textreg after any 0s have been dropped.

Out of Sample Prediction

Here we split the sample and train on one part and test on the other.
smp = sample(length(bathtub), length(bathtub)*0.5)
rs = textreg(bathtub[smp], mth.lab[smp], C = 3, gap=1, min.support = 5,

verbosity=0, convergence.threshold=0.00001, maxIter=100)
rs

textreg Results

11

C = 3 a = 1 Lq = 2
min support = 5 phrase range = 1-100 with up to 1 gaps.
itrs: 100 / 100
##
Banned phrases: ''
##
Label count:
-1 1
54 9
##
Final model:
ngram beta Z support totalDocs posCount negCount
intercept -0.8533403 1.000000 63 63 9 54
contained 0.1252517 3.162278 8 7 6 1
of * tank 0.1315792 4.123106 5 2 2 0
of methylene 1.0925088 4.000000 8 5 5 0
respiratory 1.9130294 2.828427 6 5 5 0
stripper * 0.9865971 4.358899 9 5 5 0

train.pred = predict(rs)
test.pred = predict(rs, bathtub[-smp])

train.loss = calc.loss(rs)
train.loss

tot.loss loss penalty
22.294595 9.547697 12.746898

test.loss = calc.loss(rs, bathtub[-smp], mth.lab[-smp])
test.loss

tot.loss loss penalty
36.8289 24.0820 12.7469

You might want to think carefully about how to do this if the negative documents far outweigh the positive
ones.

Cross Validation

We can find an optimal C via cross-validation as follows:
tbl = find.CV.C(bathtub, mth.lab, c("methylene","chloride"), 4, 8, verbosity=0)
print(round(tbl, digits=3))

Cs train.err test.err std_err
1 0.000 0.000 0.449 0.197
2 1.379 0.039 0.306 0.086
3 2.757 0.130 0.266 0.062
4 4.136 0.225 0.291 0.063
5 5.514 0.306 0.348 0.072
6 6.893 0.388 0.402 0.079
7 8.272 0.453 0.462 0.079
8 9.650 0.463 0.471 0.078

This is 4-fold cross validation evaluated at 8 different values of C ranging from no regularization (C = 0) to
full regularization (C just large enough to give a null model). We get a table of test error. We would then
typically pick a C that has a test error one SE larger than the minimum.

12

You can get this via the rather clumsy make.CV.chart method, which returns such a C:
rs = make.CV.chart(tbl)

0 2 4 6 8 10

0.
2

0.
3

0.
4

0.
5

0.
6

Estimated Train Error for K−Fold CV

train error

C

rs

$minimum
[1] 2.917619
##
$test.err
1
0.2624512
##
$oneSE
[1] 4.840315
##
$oneSE.test.err
[1] 0.3161564

Cleaning Text and Stemming

You can easily clean dirty text and stem it.
data(dirtyBathtub)
strwrap(dirtyBathtub$text[[1]])

[1] "Two employees of Unique Interiors Inc., were installing a bathtub"
[2] "surround in the bathroom of a single family home. While applying"
[3] "contact cement to the back of the tub surround, the vapors from the"
[4] "cement ignited the pilot light in a gas powered water heater. Because"
[5] "of the lack of ventilation, the vapors and the heater created a flat"
[6] "tire. Employee #1 was burned over 90 percent of his body and died."
[7] "Employee #2 was burnt over 15 percent of his body and he was"
[8] "hospitalized."

13

bc = VCorpus(VectorSource(dirtyBathtub$text))

bc.clean = clean.text(bc)
strwrap(bc.clean[[1]])

[1] "two employees of unique interiors inc were installing a bathtub"
[2] "surround in the bathroom of a single family home while applying contact"
[3] "cement to the back of the tub surround the vapors from the cement"
[4] "ignited the pilot light in a gas powered water heater because of the"
[5] "lack of ventilation the vapors and the heater created a flat tire"
[6] "employee X was burned over XX percent of his body and died employee X"
[7] "was burnt over XX percent of his body and he was hospitalized"
bc.stem = stem.corpus(bc.clean, verbose=FALSE)
strwrap(bc.stem[[1]])

[1] "two employe+ of uniqu+ interior+ inc were instal+ a bathtub surround+"
[2] "in the bathroom of a singl+ famili+ home+ while appli+ contact+ cement"
[3] "to the back+ of the tub surround+ the vapor+ from the cement ignit+ the"
[4] "pilot light+ in a gas power+ water heater becaus+ of the lack of"
[5] "ventil+ the vapor+ and the heater creat+ a flat tire employe+ X was"
[6] "burn+ over XX percent of his bodi+ and die+ employe+ X was burnt over"
[7] "XX percent of his bodi+ and he was hospit+"

Everything else works.
For the textreg package, the “+” are automatically turned into wildcards when doing phrase search in the
original (cleaned but not stemmed) text. We need updated banwords to account for the stemming, but other
than that, everything is the same; we are doing business as usual on the transformed text:

res.stm = textreg(bc.stem, mth.lab, c("chlorid+", "methylen+"), C=4, verbosity=0)
res.stm

textreg Results
C = 4 a = 1 Lq = 2
min support = 1 phrase range = 1-100 with up to 0 gaps.
itrs: 40 / 40
##
Banned phrases: 'chlorid+', 'methylen+'
##
Label count:
-1 1
110 17
##
Final model:
ngram beta Z support totalDocs posCount negCount
intercept -0.83022265 1.000000 127 127 17 110
due 0.02126297 2.645751 7 7 5 2
paint 0.89595460 7.280110 21 12 9 3
respiratori+ 0.32977952 2.828427 6 5 5 0
strip+ 0.99357609 6.855655 19 11 10 1
stripper 2.16582985 5.385165 15 10 10 0
that contain+ 0.22083770 1.732051 3 3 3 0

sample.fragments("that contain+", res.stm$labeling, bc.stem, 5, char.before=10)

$`that contain+`
##

14

Profile of Summary Phrase: 'that contain+'
Positive: 3/17 = 17.65
Negative: 0/110 = 0.00
Appearance of 'that contain+' in positively marked documents:
* stripper THAT CONTAIN+ at least
* an strip+ THAT CONTAIN+ XX XX pe
* ip+ agent THAT CONTAIN+ methylen
##
Appearance of 'that contain+' in baseline documents.

sample.fragments("that contain+", res.stm$labeling, bc.clean, 5, char.before=10)

$`that contain+`
##
Profile of Summary Phrase: 'that contain+'
Positive: 3/17 = 17.65
Negative: 0/110 = 0.00
Appearance of 'that contain+' in positively marked documents:
* stripper THAT CONTAINED at least
* ean strip THAT CONTAINED XX XX per
* ing agent THAT CONTAINED methylene
##
Appearance of 'that contain+' in baseline documents.

This vastly increases the ease of understanding a stemmed phrase or word.

Future work would be to be able to retrieve phrases in the original “dirty” text; that would be a useful
addition. It will mostly work now, but dropped punctuation, etc., can mess up phrase retrieval.

A final note is if generating the cleaned corpus is time consuming, there is a small helper function
save.corpus.to.files that will write out your corpus to a text file and a Rda file. The text file’s name can
then be passed to textreg, thus avoiding the need to load the corpus into R’s memory. This is recommended
to avoid a lot of copying of large objects back and forth in memory.

15

	Introduction
	Installing the textreg package
	Getting ready to regress
	Obtaining the Summary
	Tuning the Summary
	Selecting C
	Dropping documents

	Exploring the Text
	Finding Where Phrases Appear
	Independent Search Methods
	Finding Phrases' Contexts
	Relationships between phrases

	Prediction
	Out of Sample Prediction
	Cross Validation

	Cleaning Text and Stemming

